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ABSTRACT ARTICLE HISTORY
Confined Periodic Turbulence (CPT) is numerical homogeneous turbulence with periodic Received 29 January 2024
conditions, over an extended time until the eddy size is only limited by the period L. With Accepted 4 April 2024
large or infinite Reynolds number, this allows a self-similar decaying state with a constant
spectrum shape and turbulent kinetic energy k asymptotically equal to CcprL?/t? where t
is time and Ccpr is a constant, as predicted by Skrbek & Stalp. This setting may provide a
long inertial range for a given resolution and is free of inputs such as initial spectra or forc-
ing devices. Outside the viscous range, it generates the same spectra as the Linear Forcing
proposed by Lundgren and exercised by Rosales & Meneveau. We conduct DNS, with the
viscosity artificially decreasing in time to keep the Reynolds number Re = Lk /v approxi-
mately constant, and LES at infinite Reynolds number, with resolution 10243, The solutions
indeed lose memory of initial conditions. Both agree well with Rosales & Meneveau and
with the L2 /t? conjecture although with modulations; Ccpr is about 0.5. Kovasznay’s exten-
sion of Kolmogorov's theory, based on the local energy-transfer rate across wavenumbers,
predicts the spectrum well even for intermediate wavenumbers, with the Kolmogorov
constant Cx at 1.65.

KEYWORDS
Isotropic turbulence

1. Introduction

The simulation of homogeneous isotropic turbulence has been a central part of the numerical study of tur-
bulence by DNS and LES, partly because of its fundamental stature and partly because of the convenience of
periodic boundary conditions. The classical approach, in numerical and in experimental work, is to design a
domain appreciably larger than the energy-containing eddies; ideally, many copies of these eddies are present
in the domain, and its size L is irrelevant to the results. In the search for numerically pure simulations, there
is a grid convergence as the grid spacing Ax and time step At tend to 0, and a domain convergence as
L — oo. In periodic simulations, this can be ensured in one of two ways. In decaying-turbulence simula-
tions, an initial flow field in which the energetic eddies are much smaller than the domain is created, and the
simulation run only as long as the scale of the dominant eddies has not shifted too close to the domain size.
In forced-turbulence simulations, normally the forcing is applied to wavenumbers removed from the funda-
mental wavenumber of the domain, namely, kg = 27 /L. In both cases, a simulation in which the energy peak
moves close to ko would be considered tainted. In contrast some simulations extend the forcing, or negative
viscosity, all the way to zero wavenumber [1,2], in which case the energy peak is in fact at ko (depending on
minor details of how the wave-vectors are grouped), much like what will happen in our simulations herein
presented.

The classical setting with a peak wave-number of the turbulent activity appreciably larger than ko is a
careful one, but it has drawbacks. Often, there is little interest in the spectrum ‘to the left’ of the peak, the
interest being in the universal flow features, namely the energy cascade and the small scales. In decaying tur-
bulence, that region of the spectrum is largely arbitrary, for instance, it can be made proportional to k* as
advocated by Batchelor but, in our opinion, without a fully rigorous reason for that. There are arguments
in favour of the power 2 rather than 4, especially from Saffman, and experiments for grid-generated turbu-
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lence seem to be close to 3. We agree with many of the points made by Skrbek and Stalp [3] in this respect.
In forced turbulence, we conjecture that the low end of the spectrum is sustained by triadic combinations
of the forced modes, which is not a physically transparent process. We therefore contend that while a sim-
ulation which ‘saturates’ the domain size so that the turbulence is strongly confined does have unnatural
features, these are not unquestionably worse than the unnatural features of the two classical types. Compared
with cases forced down to kg instead of over a wave-number band, there is no deep difference. A simulation
which simply saturates the box has the advantage of simplicity and (statistical) uniqueness, compared with
initial condition and forcing schemes which get somewhat complex and non-unique. It may well offer the
longest inertial range for a given resolution; however, the flow is not stationary, which brings up questions
that are addressed below. An unfortunate aspect is that CPT has no experimental counterpart (for the lower
wavenumbers).

At very large Reynolds numbers, the CPT setting allows a self-similar decaying state with a simple the-
oretical prediction for the turbulent kinetic energy k, namely an inverse-square time dependence. If the
Reynolds number is finite, the decay will not be self-similar, unless the viscosity is made to decrease as
v(t) = CégTLz /(t Re) where Re was chosen arbitrarily. We adopted this approach here for the DNS. In con-
trast, the molecular viscosity of the LES was set to zero, so that the flow has an infinite Reynolds number.
Running without any molecular viscosity appears to be a new practice, but we would defend it also in conven-
tional non-confined simulations, arguing that in a true LES the grid spacing is far larger than the Kolomogorov
scale: Ax > #. In this setting, a well-resolved LES (meaning one with a large number of points within L) will
approach the pure value of the Ccpr constant, and the DNS will produce a function Ccpr(Re) which asymp-
totes to the infinite-Re value. According to Kolmogorov 41 theory, it would proceed like an inverse square
root, that is, Ccpr(Re) = Ccpr(co) — CyrRe™ /% where Cyg & 2.5 based on DNS results for the Kolmogorov
viscous range and assuming a Kolmogorov constant equal to 1.7 [2,4,5].

In both cases, there is every reason to expect a normal energy cascade towards small scales inside CPT,
so that studies of the inertial and viscous ranges of the spectrum will be unaffected. With proper scaling, the
results can also be averaged in time, which is not possible or at least quite difficult for classical decaying (or
even strained or sheared) turbulence. As mentioned in the abstract, the large scales of motion are not exactly
isotropic, but that does not invalidate the energy cascade, and this issue may affect the simple forcing schemes
also.

An original line of work is that initiated by Lundgren [6] and continued by Rosales and Meneveau [7],
Bassenne and Urzay [8], Palmore Jr and Desjardins [9]; it is also used by Piomelli et al. [10]. The ‘Linear Forc-
ing’ is uniform, simply adding to the momentum equation a term proportional to the velocity perturbation
u/, multiplied by a coefficient A which is an inverse time. It can be applied in Fourier or real space. We will
show that our decaying solutions and their forced solutions bear a simple relationship, except for the viscous
term. They essentially produce the same turbulence. This arguably gives an interesting angle from which to
view the linearly-forced solutions, an insight Lundgren himself clearly hinted at on p. 464 [6]. The viscous
term can be handled with an artificial decrease of the viscosity, leading to a complete equivalence, as will be
shown in Section 3.

We agree with most of the points made by Rosales & Meneveau about linearly-forced turbulence [7], but not
with the description of the turbulence as simply isotropic. The largest eddies are not quite isotropic because
the periodicity operator is not spherical. Another explanation is that the two-point correlations must satisfy
a Neumann condition on the surface of the cube (if the first point is in its centre), by symmetry. This is not
compatible with isotropy, which demands that the correlations be functions only of distance. In non-confined
turbulence, the correlations have died down to very small levels for separations of order L, so that the conflict
is very weak; this is not the case in CPT, in which the correlation at a distance L/2 in the x direction is still of
the order of 0.15 as will be shown.

We also believe Rosales & Meneveau did not insist quite clearly enough on the confinement effects
(although in the end they did refer to the energy-containing scales being ‘contaminated by finite domain-
size effects’), and that the apparently wider inertial range they obtained with low-k (i.e. non-uniform) forcing
than with linear forcing is a little artificial (their Figure 12). Finally, we have to note that outside homogeneous
turbulence, linear forcing is not as simple as it may seem, because it would require advanced knowledge of the
averaged flow field, to calculate #’ (in homogeneous turbulence, this average is zero). Still, this line of work is
highly relevant to the present one.
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The shorter expression Confined Turbulence would, unfortunately, conflict with its prior use by Johnsen
etal. [11] since they are studying turbulence confined by viscous walls. This is a more complex situation, and
no relation between the two types of flows is expected. Confined Periodic Turbulence seems descriptive.

These considerations constitute the motivation for a study, including a variety of initial conditions and,
of course, the difference between DNS and LES. Our primary purpose here is to propose Confined Periodic
Turbulence as a valid tool to study the energy cascade and to verify the postulated scaling laws. There is
also a lesson in the connection with Linear Forcing. More studies focused on the cascade may come later if
indeed this flow is accepted as relevant by the scientific community of turbulence. In Section 2 we present the
analytical correspondence between decaying and linearly-forced solutions. In Section 3 we propose a theory
for the spectrum at wavenumbers smaller than those in the fully-inertial range. In Section 4 we outline the
numerical method and sub-grid-scale (SGS) model. In Section 5 we present the results, and in Section 6 we
present conclusions and an outlook.

2. Relationship to linear forcing

Consider an unforced solution, u; (x, t1), of the incompressible (V - u = 0) Navier-Stokes equations written
with a time dependent viscosity, v (t;),

ou
6_t1+u1 -V, = —Vp; +v(H) V. 1)
1

Let T be an arbitrary time scale, and define the fields u, = (¢;/T)u; and p, = (t% / Tz)pl, as well as the time
t = Tlog(t1/T). The two flow fields (1 and 2) have the same domain size L. The Navier-Stokes equations
written for uy is

2—22 +uy-Vup =—-Vpy + %V(fl)vzuz + %ub (2)
in which we recognise the Linear Forcing term Au, [6], with A = 1/T. If, further, t;v(#;) is constant, u;
satisfies Lundgren’s Equations (2), (3) with the constant viscosity v, = (t1/T)v ().

This demonstrates a direct relationship between solutions of the unforced equations with viscosity scaling
like 1/t;, and linearly forced equations with constant viscosity. The two sets of equations give fields which are
proportional to each other, in domains of the common size L.

In both systems, the forcing or time evolution has the same inverse time scale A or 1/t; across all length
scales of the turbulence, and the small eddies of size [ have shorter time scales proportional to (12 /€)'/? where
€ is the dissipation rate. As a result, the small eddies are less sensitive to A or #; than the large scales are. This
is a classical argument in favour of isotropy and universality of the small eddies.

In our simulations of CPT, the Linear Forcing simulations have a constant A and by dimensional analysis
gives, A = Crrv/ka/L with Cyr a universal constant, while the decaying simulations have k; = Ccprl?/ t% as
mentioned before. When t; = T, we have k; = k, =k, and this leads to Ccpr = 1/ C%F. Rosales & Men-
eveau’s [7] Cases 3a-3c have, in their units, k &~ 0.67 when A = 0.2 and L = 2x. Therefore, Crr &~ 1.5,
implying Ccpr ~ 0.45, which are in excellent agreement with our numerical results of CPT below.

3. Extension of Kolmogorov’s theory to wavenumbers smaller than the pure inertial range

Kolmogorov’s 1941 theory [12] revolves around a single energy-transfer rate €, which dominates the
description in the inertial range and viscous range of the spectrum. More generally we can define an energy
flux at each wavenumber k, namely the rate of loss of the amount of energy contained in lower wavenumbers,
k' < k, produced by the nonlinear term in the momentum equation [13]. The idea of an energy transfer that
is fully ‘local” in wave space is only an approximation, since wavevector triads exchange energy between the
two sides of k over a range of wavenumbers; however, this range is less than an order of magnitude, so that a
simple ‘local’ approximation may have merit, and deserves comparison with simulation results. Davidson [13]
surveys similar proposals by Obukhov and others, which could be tested unambiguously with the present type
of simulations.
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Assume a scaling for the spectrum of the type
E(k) = LKF'(kL), (3)

where F' is the derivative of F, which itself is a universal function with F(0) = 0 and limy;_, o F(kL) = 1. As
the flow lives on, the spectrum has statistical oscillations in the neighbourhood of this distribution, and the
oscillations are weak when kL >> 1, because the sample of wavevectors is larger in larger ‘shells’ (in fact, for
kL of order less than 20, the calculation of the three-dimensional energy spectrum is ambiguous because the
number of wavevectors is not large enough). The energy up to wave-number k is kF(kL), and k is decaying.
Therefore, the energy flux across k towards small scales is

dk
e(k) = —ap(kL). (4)

For kL > 1, this energy flux is close to the full dissipation €o, = —dk/dt because F approaches 1. Here, we are
neglecting viscous dissipation up to k, and considering only the inviscid energy transfer. We are also ignoring
the fluctuations in time relative to the exact 1/t* decay, which are discussed below.

A standard inertial range will have

E(k) = Cxe2l’ k™57 (5)

where Cg is the Kolmogorov constant, and we conjecture the same relationship with the local energy transfer
rate:

E(k) = Cye(k)*3k™>/3. (6)

This is our key assumption, and it is not trivial. It is equivalent to that of Kovasznay in 1948 [13,14]. Note that
both Kovasznay [14] and Davidson [13] examined its consequences for the spectrum in the viscous range,
when k# approaches the order of 1 and it begins to deviate downwards from the —5/3 law, and the approx-
imation was only moderately successful. In contrast, our interest is in the deviations of the spectrum at the
other end of the pure inertial range, i.e. at wavenumbers smaller than the conventional inertial range. Calling
this range ‘inertial’ is correct in the sense that the viscosity plays no role.

For fully-developed CPT, analytical predictions are possible and are described in detail below. For other
types of homogeneous turbulence simulations, analytical forms are usually not available, but the hypothe-
sis can be tested at a given time by accounting for both the time derivative of the kinetic energy contained
in wavenumbers smaller than k, and if applicable the rate of forcing over the same range of wavenumbers.
Therefore, Equation (6) is a candidate to correct Kolmogorov’s simple spectrum for wavenumbers moderately
smaller than the pure inertial range.

In CPT, assuming that the turbulence kinetic energy, k, is

L2
k= CCPTt—Z) (7)
then
dk »C L? )
€ = —_——= -,

Using Equations (3), (4), (6), and (7) leads to the following ordinary differential equation for F:

CilorF'(KL) = C (2F)*/3 (kL) ™%/3, )

whose solution is

F =1 - Ck(Cepr) (k1)) (10)
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Using (10), the equation for E(k) (3) gives

E(k) = 22 LkCx Cpl? [1 = Cx(2Cepr) ™2 (kL)—2/3]2 (kL)~%/
= Cxe2l® [1 = Ck(2Cepr) ™A (kL) ™2] k33, (11)

which is compatible with the type assumed above for E(k). The last expression (11) is Kolmogorov’s classic
E(k) =C Ke§é3k_5 /3, but with a correction factor in brackets. These results contain no new adjustable param-
eters, which allows for a rigorous verification through simulations of CPT. The simulation results of the energy
spectrum E(k) can be compared to the derived analytical spectrum Equation (11) or with Equation (4) directly,

with

dfr* .Y  dk
e(k)=—§(/0 E(k)dk)_—aF(kL). (12)

Agreement is not expected towards zero wavenumber, since, from Equations (10) and (11), limy_,o F(k) =
—oo and limg_, ¢ E(k) = oo.
Pao’s [15] similarity hypothesis gives

E(k) = Cxe2l’ k™ exp (—=32'3Ck (kL) ™3). (13)

We show its results below, but in our opinion, the role of €, makes it less convincing physically than our
proposal for low-to-moderate wavenumbers.

4. Numerical method
4.1. Solver

We performed direct numerical simulation (DNS) and large eddy simulation (LES) to solve the unsteady
Navier-Stokes equations for incompressible flow. The computational domain is a cube with periodic boundary
conditions in all three spatial directions. The governing equations are discretised in space using the second-
order accurate central difference scheme on uniform staggered grids ranging from 256> to 1024 points. The
LES is performed using the Smagorinsky model [16] with Cs = 0.17. The pressure-correction method is used
to advance the solution in time, i.e. the pressure is treated implicitly and obtained by solving the Poisson
equation in finite-difference form using a combination of one-dimensional fast Fourier transforms (FFTs) in
the x and y direction and specialised Gauss elimination in the z direction [17]. More details about the parallel
fast Poisson solver are given in Ref. [18]. Time integration is performed using the second-order Adams-
Bashforth scheme. In the DNS (finite Re) cases, the viscosity is decreased in time as v(¢) = ClchLz /(t Re),
where Ccpr = 0.5. Also, the time step, At, is computed as At = Ax/ (40\/E), thus At increases in time as k
decreases and the integral time scale increases. This results in maintaining the CFL number approximately
constant in time.

With regard to the practice of letting the viscosity decay to sustain the Reynolds number, we have shown
that it is equivalent to forcing turbulence by keeping the viscosity constant and re-scaling the velocity field
such to keep k constant in time. Also, this has similarities with the practice of a negative viscosity or a velocity
re-scaling which has been used since Kerr [1], with the crucial difference that the present method does not
have a cut-off for the wave-numbers which receive the re-scaling, and thus it has the advantage of avoiding
the arbitrary choice of setting a cutoff scale, e.g. for k/ky < 2.5.

4.2. Initial conditions

We initialise the velocity field with various initial conditions as follows: (i) 2-D Taylor-Green vortex flow [19]
(for which a small perturbation is introduced to break the initial symmetries; case 2), (ii) 3-D isotropic tur-
bulence with initial energy spectrum according to the model spectrum by Pope [20] (Cases 3-8), and (iii)
uniformly distributed random numbers between —1 and 1, and projected to satisfy the divergence-free con-
straint (Case 1). These three approaches yield initial energy spectra (E(x)) in which the majority of the
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Table 1. Summary of the simulation cases that were studied.

Case N3 Type Initial conditions Re

1 2563 DNS random numbers 3000
2 256° DNS Taylor-Green vortex 3000
3 2563 DNS isotropic turbulence 3000
4 2563 LES isotropic turbulence 00
5 2563 DNS isotropic turbulence 1500
6 5123 DNS isotropic turbulence 8000
7 5123 LES isotropic turbulence 00
8 10243 LES isotropic turbulence 00

Note: The LES cases use the Smagorinsky model with Cs = 0.17 and the molecular viscosity is set to zero.
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Figure 1. Normalised z-vorticity contours (w,L/~/k) in an x—y plane in a mature flow field. Left, Case 3 (DNS, Re = 3000);
Right, Case 4 (LES, Re = 00).

energy is concentrated in the low, intermediate, and high wavenumbers, respectively. The simulations are
run for approximately 50 integral time scales. The integral time scale is defined as v, = €/ uyms, Where ¢ is the
longitudinal integral length scale. We note that for ¢ > 0, £ is roughly invariant in time with a mean value
¢ = 0.15(Table 1).

5. Results
5.1. Flow visualisations

We begin by showing visualisations of Confined Periodic Turbulence (CPT) obtained from our numerical
simulations. Figure 1 shows vorticity contours for Cases 3 and 4. The vorticity contours appear typical of
periodic simulations and show no indication of being dominated by an eddy or a few eddies of size close to
L. In other words, the confinement is far from blatant in physical space (compare with the Taylor-Green ini-
tial condition, for instance). In contrast, a two-dimensional simulation would evolve to a very small number
of eddies. The velocity contours in Figure 2, being less dominated than vorticity contours by small scales of
motion, are more suggestive of rather long waves, but the confinement is still not obvious. Arguably, the sim-
ulation contains a large enough number of eddies, evolving independently of each other. This is physically
satisfactory. The integral length scale of the turbulence is about 0.4L; in that sense, the confinement is unmis-
takable. With the same 256° resolution but a higher Reynolds number, the large-eddy simulation (Case 4)
naturally produces much finer grain than the DNS (Case 3), which will be reflected in the spectra, below.

5.2. Isotropy considerations

Figure 5 shows the longitudinal two-point correlations in Case 4 for the x direction, and in the direction
oblique between the x and y axes, that is,

Filnt) = (ur(x + Tel;t)ul(x, t)>’ Fialryt) = (U2 (x+ rel;:t)uu(xa t))' (14)
<u1> <u12>



JOURNAL OF TURBULENCE (&) 7

-0.8

-1.6

Figure 2. Normalised uq-velocity contours (us /\/R) in an x—y plane in a mature flow field. Left, Case 3; Right, Case 4.
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Figure 3. Time evolution of the pre-multiplied turbulent kinetic energy, with various initial conditions for Re = 3000 on a
2563 mesh. — — —, random numbers (Case 1); — - -, isotropic turbulence (Case 3); ---, Taylor-Green vortex (Case 2).

where u;; = (u; + uz)/ﬁ andep;; = (e + ez)/ﬁ. The functions f; and f1, were time averaged for 10 flow
realisations evenly spaced over t/T = [1077,10°], where T is the final time of the simulation. The two curves
coincide for small separations, and depart decidedly for larger separations, fully confirming the expectation
that in CPT the small scales are isotropic, and the large scales are mildly anisotropic. This issue was mentioned
in Section 1.

5.3. Turbulent kinetic energy

We now test the hypothesis of a 1/¢? behaviour for k. Figure 3 presents kt?/L? versus time for various ini-
tial conditions (Cases 1-3). As discussed in the Introduction, this quantity is expected to equal Ccpr in the
long run. This normalisation and a logarithmic axis for time make the presentation equivalent to the natu-
ral presentation for linearly forced turbulence; in other words, the right half of the figure may be viewed as
‘well-developed.” The simulations are long enough that a virtual origin of time is not necessary. The figure is
quite in favour of the theory, and in particular a large surge is seen with the Taylor-Green initial condition
(Case 2) leaves no permanent effect. The ‘apparent’ Ccpr oscillates between roughly 0.35 and 0.7. These mod-
ulations are unexpectedly strong, just like those observed by Rosales & Meneveau; they also had a factor of
approximately 2, peak-to-peak, if we include the rare excursions in their long simulations. The physics will
be discussed below.

Figure 4 again presents kt? /L% versus time, to explore the effect of resolution and Reynolds number (Cases
3-6). Increasing resolution at fixed Reynolds number predictably increases the TKE, but by a small amount
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Figure 4. Time evolution of the pre-multiplied turbulent kinetic energy, with different Reynolds numbers and resolutions, in
DNS: - - —, 2563, Re = 1500 (Case 5); - - —, 2563, Re = 3000 (Case 3); --- 5123, Re = 8000 (Case 6); and in LES: — - - — 256°,
Re = oo (Case 4).
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Figure 5. Time-averaged two-point velocity correlation for Case 4. —, f(r) computed in a coordinate direction (e1); - — -, f(r)
computed in a diagonal direction (e1 + e;).

with the resolutions used here. The 256 simulation had Ax = 25 where 7 = (v3/€)'/# is the Kolmogorov
length scale and e is the dissipation rate. These are typical values. The velocity-derivative skewness is about
—0.48, which is accurate. The modulations are very similar to those in the other set of simulations, thus
confirming the universal behaviour of mature solutions. The slope of the modulations is of interest. Figure 4
shows that the highest slope d(log(kt?))/d(log(t)) is of the order of £0.4. The inviscid evolution would make
this slope equal +2. In that sense, the time evolution term (which would be the forcing term in Lundgren’s
setting) is out of balance with the dissipation by about 20% in alternating directions; this is significant, but not
large. This is confirmed by Figure 6, showing the normalised dissipation versus normalised kinetic energy in
Case 4. They satisfy

d(kt?/L?)  2k?  ef?

d(logt) ~ L* 212

and therefore, the orbits are travelled counter-clockwise, and when the two quantities are equal, on the dashed
line, the orbit is vertical (i.e. d(kt>/L?)/dt = 0). The initial transient was removed until the curve started
inside the ‘visible attractor.” The correlation between energy and dissipation is very strong and positive. Other
figures show that the dissipation typically lags by 0.5 units in log t. To gain perspective, note that €/ which is
part of the Kolmogorov formula varies by about £25% at the extremes (since € itself varies by about £40%).
The average value of the function f(x) = x*/* over the interval 0.6 <x < 1.4 is 0.994, in other words, the

(15)
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Figure 7. Time-averages of the turbulent kinetic energy spectra normalised by L and k in DNS cases, - — -, 2563, Re = 1500
(Case 5); — - —, 2563, Re = 3000 (Case 3); ---, 5123, Re = 8000 (Case 6); LES case, — - - —, 10243, Re = oo (Case 8); - — —
Kolmogorov's k=5/3 power law ; — (blue) Extension of the K41 theory, Equation (11); - (orange) Equation (13).

function is not strongly convex over this range. Therefore, the impact on a calculation of the Kolmogorov
constant Cg, for instance, would be negligible.

Figure 6 demonstrates the sustained excursions of energy and dissipation but does not in itself represent
deterministic chaos the way the Lorenz attractor does, because the two quantities are not subject to two ordi-
nary differential equations (if they were, the orbits would not cross). There is only (15). It is very likely the
entire system of equations of the LES has a strange attractor, but this figure is only a symptom of it, of which
the physical meaning should not be exaggerated since it is dominated by the confinement effect.

5.4. Spectra

Figure 7 shows energy spectra for DNS with various resolutions and Re values ( Cases 3, 5, and 6), and for
LES for 1024* mesh and Re = 0o (Case 8). The spectra are normalised by k, and then time averaged over
the last 12.8 turnover times. The dissipation €5, was calculated by spatially averaging the product of the
molecular or eddy viscosity and the square of the strain tensor. The comparison with (11) is quite favourable.
The theory deviates from the —5/3 spectrum for k/ky below roughly 15, and the simulated spectra with
higher Reynolds numbers have a very similar trend, even following it down to the fundamental wavenumber
ko, where the correction relative to an extrapolation of the —5/3 spectrum is a factor of almost 3 which is
considerable.
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100 10! 102
k/ko
Figure 8. Time-averages of the pre-multiplied energy spectra in DNS cases, — — —, 2563, Re = 1500 (Case 5); - - —, 256,
Re = 3000 (Case 3); ---, 5123, Re = 8000 (Case 6); LES cases, — — —, 5123, Re = oo (Case 7), — - - —, 10243, Re = oo (Case

8); — (blue) Equation (11); - (orange) Equation (13).

The agreement with Rosales & Meneveau is very good, including for instance the dip of the spectrum at
k/ky = 3, followed by a rise at 4. As expected the two systems of equations, namely linear forcing and free
decay, produce the same flow fields.

Figure 8 shows the time-averaged spectrum pre-multiplied by /3, which allows the use of a linear vertical
scale and is therefore much more discriminating. This confirms the close agreement with (11): the agreement
on the shape of the spectrum is surprisingly good even towards very small wavenumbers. In addition, the
response of LES to grid refinement is fully consistent with the theory, the upwards spectral bump near k =
0.4kmax simply sliding to higher wavenumbers and following the upward trend of (11) while the spectra are
virtually identical up to wavenumber around 10kg. We consider this spectral bump as undesirable, and in
hindsight would lower the value of the Smagorinsky constant to try and extend the —5/3 range, but we lost
access to the computing facility. Thus Kovasznay’s approximation appears to have more merit in this lower
part of the spectrum than it does in the viscous range, and to be a powerful tool when attempting to determine
Ck accurately, say within an uncertainty of 0.05.

Rosales & Meneveau compared linearly forced turbulence and turbulence forced only for wavenumbers
satisfying kL < 4r, and concluded that the latter type of forcing allowed a longer conventional inertial range
for the same resolution. The integral length scale of the turbulence was near 0.4L with linear forcing, instead of
0.2L with low-k forcing. This is significant, but it must be recalled that forcing for all wavenumbers less than
kL < 4z until a statistically steady state is reached also produces confined turbulence. The classical ‘large
domain’ approach forces only over a range of wavenumbers that does not extend down to zero, and then the
integral length scale of the turbulence will be markedly smaller again, thus shortening the inertial range. The
spectra presented here suggest that the ‘pure’ inertial range is reasonably wide, extending down to k/kg of the
order of 15 when viewed on a logarithmic scale. The linear scale is far more demanding if a precise value of Cx
is the objective, suggesting a limit closer to 100 than to 15. In contrast, if (11) is accepted, then the extended
inertial range is quite wide, and for instance, a calculation of the Kolmogorov constant Cx might attempt a
visual fit down to k/kq of the order of 5.

6. Outlook

We have attempted to present what we call Confined Periodic Turbulence with a little more clarity, qualifica-
tions, and understanding than the literature had, and to argue that it offers a convenient and correct setting
to study the energy cascade and other physics of the medium- and small-scale eddies in homogeneous tur-
bulence. CPT was shown to be accessible either in the setting of Linear Forcing due to Lundgren [6] and well
exercised to a stationary state by Rosales and Meneveau [7], or a new setting of long natural decay, possibly
with artificially decaying viscosity in a DNS, or zero viscosity if using LES. In fact, with zero viscosity, the
fully-developed flow has no physical non-dimensional parameters at all (only numerical parameters), and no
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dependence on initial conditions (provided of course they contain the seeds of turbulence); we view these
facts as quite favourable for any theoretical study. The problem definition could not be simpler, and compar-
isons between research groups are rigorous. The time-averaged spectrum is a universal function of turbulence
(for which the results of Rosales & Meneveau and ours agreed quite well), just like Ccpr is a universal con-
stant. The only parameters of the numerical simulation are its resolution, say 512° grid points and a set CFL
number, and of course the type of discretisation in space and time, in addition of course to the SGS model.
Conversely, the study of CPT is possible only in numerical simulations, but these are now a very well-accepted
fundamental research tool especially for free turbulent flows.

The quantitative agreement with results in the literature is quite good for the key constants, AL/+/k in a
forced simulation and Ccpr in a decaying one, and also for the spectra. We proposed a plausible extension of
the Kolmogorov 1941 law for the spectrum, almost identical to Kovasznay’s but free of adjustable parameters
other than the Kolmogorov Constant, and the simulation results followed it well, suggesting that an ‘extended’
inertial range with a non-uniform energy-transfer rate is present. This approximation is based on a non-trivial
assumption of ‘locality’ of the energy transfer in wavenumbers space, and the simple criterion we used applies
only to the types of simulated turbulence considered here. However, Equation (6) has no such limitation and
could be tested in any simulation of isotropic or nearly-isotropic turbulence, steady or not. We believe € (k) is
a well-defined quantity, and in fact that assuming the relationship in (6) is very consistent with Kolmogorov’s
thinking.

The simulations confirmed the sizable modulations of the turbulent kinetic energy around its long-term
trend, as found by Rosales & Meneveau. We argued that these may not be undesirable, or contrary to the
intermittency found in all turbulent flows (although not akin to the alternance of turbulent and non-turbulent
patches at the edge of turbulent shear layers). According to (10), 50% of the energy is contained in a sphere of
radius k/ko = 4 in spectral space, which contains almost 300 wave-vectors. Thus, it is not a sample of only a
few Fourier modes, yet their collective energy sustains significant modulations. There is a clear stable feedback
mechanism between energy and dissipation, as seen in Figure 6. The attractor of the solution, even in CPT
which might have been expected to tend to relatively simple behaviour, is complicated indeed.
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