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a b s t r a c t 

The smallest hydrodynamic length scales in two-phase turbulence are located at the interface between 

phases, or fluids, as a result of two-way coupling phenomena. Typically, these interface-generated scales 

are several times smaller than the dissipative scales in the surrounding bulk flow identified by Kol- 

mogorov’s 1941 theory. Consequently, to properly capture these interface-generated small scales with 

sufficiently fine resolutions, the computational cost of performing large-eddy simulations of two-phase 

turbulent flow increases significantly from its (single-phase) theoretical optimum and toward values on 

the order of the direct numerical simulation of turbulence. Therefore, to maintain the cost of scale- 

resolving approaches linear with respect to the Reynolds number, this work investigates the modeling of 

the small-scale fluid motions in the vicinity of the viscous near-interface region of two-phase turbulent 

flows. Given the resemblance between the flow structures in the near-interface regions and those found 

in the boundary layers of turbulent wall-bounded flow, the modeling methodology proposed is inspired 

by ideas developed for turbulent flows interacting with solid walls, but modified to capture slip-velocity 

effects between phases. The performance of the approach is a priori assessed by utilizing data from di- 

rect numerical simulations of decaying isotropic turbulence laden with droplets of super-Kolmogorov size, 

demonstrating its computational feasibility and potential for reducing the cost of large-eddy simulation 

studies of two-phase turbulence. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The interaction of turbulence with two-phase interfaces encom-

asses very complex multiscale flow phenomena of interest in a

ide range of engineering and scientific applications, like for ex-

mple rain formation in clouds ( Grabowski and Wang, 2013 ), spray

tomization in combustors ( Sirignano, 1983; Faeth et al., 1995;

ofre and Urzay, 2020 ), and microbubble generation in biomedical

nd processing technologies ( Rodríguez-Rodríguez et al., 2015 ). In

uch systems, the dispersed phase typically undergoes significant

ates of deformation and break-up/coalescence events due to vorti-

al and straining flow motions, and/or external forces, that greatly

ncrease the surface area between phases. In these near-interface

egions, turbulence is modulated as a result of two-way coupling

ffects ( Dodd and Ferrante, 2016 ), favoring low-enstrophy/high-

issipation motions with characteristic sizes significantly smaller
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han the dissipative scales in the bulk of the carrier phase ( Dodd

nd Jofre, 2018; 2019 ). 

The inherent nonlinearity of the flow mechanisms encountered,

ogether with the numerous challenges associated with perform-

ng experiments, renders computational approaches an indispens-

ble tool for the analysis, design and optimization of two-phase

urbulence phenomena in industrial and natural problems. In this

egard, direct numerical simulation (DNS) of turbulent two-phase

ows ( Elghobashi, 2019 ), resolving all length and time scales of

urbulence interacting with interfaces, is now feasible for moderate

eynolds numbers or for reduced computational complexity, viz.

nterfaces undergoing small deformation and/or limited number

f droplets/bubbles. Selected examples of DNS studies in the past

ecade include mixing layers and free-surface problems ( Agbaglah

t al., 2017; Almagro et al., 2017; Ling et al., 2019; Deike et al.,

016 ), bubbly flows ( Balcázar et al., 2015; Lin et al., 2018; Chan

t al., 2019 ), sprays and atomization processes ( Gorokhovski and

errmann, 2008; Shinjo and Umemura, 2010; Desjardins and

itsch, 2010 ), and multiphysics flows ( Prosperetti, 2017; Lu et al.,

017; Rasthofer et al., 2019; Soligo et al., 2019 ). The flexibility

nd degree of detail of such high-fidelity (HF) calculations pro-

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103406
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vides insightful information for the characterization of the under-

lying flow physics. In addition, the results obtained can be used

as reference data for the development of coarse-grained mod-

els useful in the design and optimization of engineering systems.

However, the computational cost of these fine-grained simula-

tions are extraordinarily high, typically requiring large allocations

in powerful computing facilities. In particular, the necessity of

high-performance computing (HPC) resources arises from the strin-

gent spatio-temporal resolutions required to capture for sufficient

long periods of time, e.g., large-eddy turnover time in turbulence-

dominated flows, the wide range of turbulent length and time

scales ( Moin and Mahesh, 1998; Tryggvason et al., 2013 ) and the

temporal evolution of interfaces ( Jofre et al., 2010; 2014; 2015;

Valle et al., 2020 ) as they change topology and break-up/coalesce. 

The computational cost of studying turbulence can be sig-

nificantly reduced by means of large-eddy simulation (LES) ap-

proaches ( Rogallo and Moin, 1984; Lesieur and Metais, 1996;

Meneveau and Katz, 20 0 0 ), in which the small-scale motions

in the bulk of the flow are modeled ( Jofre et al., 2018;

2019 ) instead of resolved. Although much less explored than

in single-phase turbulence, the extension of LES strategies to

multiphase flow problems started two decades ago marked

by the gradual migration from Reynolds-Averaged Navier-Stokes

(RANS) modeling to scale-resolving turbulence simulation includ-

ing LES and its multiphase flow sub-variants ( Lakehal, 2018 ):

(i) dispersed-flow LES [referred to as large-eddy and structure

simulation (LESS)], (ii) and interfacial-flow LES [referred to as

large-eddy and interface simulation (LEIS)]. This transition was

mainly driven by the limited predictive performance of sta-

tistical turbulence modeling in multiphase flows. The deriva-

tion of the LESS equations is detailed in the work by Lakehal

et al. Lakehal et al. (2002) , and the resulting formulation has been

applied, based on two-fluid approaches ( Crowe et al., 1996 ), to

study bubbly flow ( Deen et al., 2001 ), sprays ( Sirignano, 2002 ),

particle-laden flow ( Capecelatro and Desjardins, 2013 ), and buoy-

ant plumes ( Yang et al., 2016 ). While the LESS variant is best suited

for a range of problems in which one of the phases is dispersed

in the other, LEIS ( Lakehal, 2010 ) provides superior accuracy at

expenses of higher computational costs by directly resolving the

interface dynamics and turbulent motions down to the grid res-

olution. This work focuses on the study of two-phase flows in

which the carrier and dispersed phases are separated by an in-

terface and interact with each other. Consequently, the LEIS strat-

egy is selected to develop the near-interface modeling approach

due to its higher accuracy. Over the past years, different mathe-

matical frameworks have been proposed within the LEIS formal-

ism based on directly filtering the flow ( Labourasse et al., 2007;

Klein et al., 2019 ) and interfacial ( Toutant et al., 2009; Herrmann,

2013 ) regions, and proposing appropriate subfilter scale (SFS) mod-

els ( Klein et al., 2020; Saeedipour et al., 2019; Hasslberger et al.,

2020 ) to represent the interface dynamics and stresses ( Aniszewski

et al., 2012; Saeedipour and Schneiderbauer, 2019 ). LEIS has been

applied, for example, to calculate turbulent gas-liquid flows involv-

ing large-scale sheared interfaces ( Lakehal and Liovic, 2011 ), clus-

tering of bubbles in wall-bounded flows ( Lakehal, 2017 ), and pri-

mary breakup in atomization processes ( Kaario et al., 2013 ). 

Away from solid walls, LES has proven to be a computation-

ally tractable approach to simulate single-phase, unsteady turbu-

lent flows ( Masquelet et al., 2017; Domino et al., 2019 ) over the

past decades. However, as analyzed in a recent DNS study of

isotropic turbulence laden with finite-size droplets by Dodd and

Jofre (2019) , the smallest hydrodynamic scales in turbulent two-

phase flows are located at the interfacial regions, presenting char-

acteristic sizes that are 2–3 times smaller than that of the dissipa-

tive Kolmogorov scales in the surrounding bulk flow. In particular,

the flow topologies in these regions resemble those found in wall-
ounded flows. Therefore, to bypass the near-interface stringent

esolution requirements and make LES approaches cost-efficient for

he study of turbulent two-phase flows, this work focuses on the

erivation of the theoretical framework and a priori analyses of

nterfacial layer flow models based on ideas inspired from wall-

odeled LES approaches ( Piomelli and Balaras, 2002; Kawai and

arsson, 2012 ). To that end, this paper is organized as follows. First,

n Section 2 , important dimensionless numbers and characteris-

ic scales in two-phase turbulence are introduced. A description

f the LES (filtered Navier–Stokes) equations is given in Section 3 .

n Section 4 , the derivation of the near-interface flow modeling

pproach is presented. Next, in Section 5 , performance tests and

xperiments are discussed. Finally, in Section 6 , the work is con-

luded and future directions are proposed. 

. Dimensionless numbers and characteristic scales 

The dynamics of multiphase flows is characterized by a variety

f nondimensional numbers ( Tryggvason et al., 2011; Jofre et al.,

020 ). Their importance depends on the physical mechanisms driv-

ng the flow. In turbulent flows, the ratio between inertial and vis-

ous forces is characterized by the Reynolds number defined as 

e = 

ρLU 

μ
= 

LU 

ν
, (1)

here L and U are characteristic length and velocity scales, and ρ ,

and ν = μ/ρ are the density and dynamic and kinematic vis-

osities, respectively, of one of the phases. For inertia-dominated

wo-phase flows, pressure differences scale proportionally to ρU 

2 ,

nd as a result the normal stress condition at interfaces introduces

he dimensionless Weber number expressing the ratio of inertia to

urface tension forces given by 

 e = 

ρLU 

2 

σ
, (2)

ith σ the surface tension coefficient. Eliminating the velocity U

etween the Reynolds and Weber numbers results in the Ohne-

orge number Oh = μ/ 
√ 

ρσ L , which compares viscous and capil-

ary forces. 

The Reynolds and Weber numbers define a two-dimensional (2-

) space where different turbulent two-phase regimes can be dis-

inguished. Associated to the different regimes are a set of char-

cteristic scales related to the energy cascade and break-up pro-

esses. As presented in the paragraphs below, the flow mechanisms

escribing their behavior are described by the turbulent eddy sizes

nd bubble/droplet length scales. 

As conceptualized by Richardson’s (statistically steady-

tate) view of the energy cascade for single-phase

ows ( Richardson, 1922 ), turbulence can be considered to be

omposed of eddies of different sizes � . The eddies in the largest-

ize range are characterized by the length scale � 0 , which is

omparable to the integral flow scale L ≈ 6 � 0 . These turbulent

otions are relatively slow, but very energetic, dominated by in-

rtial effects, and unstable. As a result, they break up, transferring

heir energy to somewhat smaller eddies. These smaller eddies

ndergo a similar break-up process, and transfer their energy to

et smaller eddies. This energy cascade continues down to the

olmogorov scale η ( Kolmogorov, 1941 ), where molecular diffusion

s effective in dissipating the kinetic energy and stabilizing the

ow motions. As illustrated in Fig. 1 , the energy cascade can be

eparated in three distinct parts: (i) the energy-containing range

here energy is introduced (production rate P), (ii) the inertial

ubrange in which energy is transferred to smaller eddies [transfer

 (� ) ], and (iii) the dissipation range where viscous effects become

ominant (dissipation rate ε). The inertial subrange is delimited

y the length scales � EI ≈ 1 / 6 � 0 and � DI ≈ 60 η. The eddy size � EI 
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Fig. 1. Diagram of the energy cascade in terms of eddy sizes � (logarithmic scale) at very high Reynolds number showing the main turbulent scales and ranges. Illustration 

adapted from Pope (20 0 0) . 

Fig. 2. Classification of break-up morphologies and secondary droplet formation as function of the Weber number for gas-liquid systems ( Oh < 0.1). Graphics based on 

Pilch and Erdmann (1987) . 
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1 The Taylor microscale is mathematically defined between the Kolmogorov and 

integral length scales, and has been consequently selected as a representative exam- 

ple within the range of applicability envisioned for the modeling approach. Other 

length scales in the inertial subrange could be considered for generating the regime 
emarcates the separation between the anisotropic large eddies

 � > � EI ) and the isotropic small eddies ( � < � EI ), whereas � DI splits

he universal equilibrium range between the inertial subrange

 � EI > � > � DI ) and the dissipation range ( � < � DI ). In connection to

ES approaches, in which the filter and grid sizes �̄ are expected

o be sufficiently fine to resolve (approximately) 80% of the kinetic

nergy in the bulk of the phases ( Pope, 20 0 0 ), the length scale

 EI provides the theoretical maximum LES resolution by satisfying
¯ < � EI . 

In the case of multiphase flows with small Ohnesorge numbers

 Oh < 0.1), such as gas-liquid systems, the importance of viscous

orces is relatively small and the Weber number becomes the prin-

ipal parameter describing break-up behavior. For initially spheri-

al drops, various break-up morphologies have been observed as

 function of W e = ρc U 

2 D/σ, including vibrational, bag, bag-and-

tamen, multimode, sheet-thinning and catastrophic modes, where

c is the density of the carrier phase, D is the diameter of the

ispersed phase, and U is the relative velocity between phases.

ollowing the work by Pilch and Erdmann (1987) , the break-up

orphology classification of drops based on We , or liquid columns

iewed from the top, and secondary droplet formation is depicted

n Fig. 2 . The no break-up condition is defined by cases where the

rop stays intact, while the drop breaks into few large droplets

n vibrational mode. Bag break-up is generally characterized by

he occurrence of a single bag-like shape. If more than one bag

s formed, the morphology is considered multimode. Finally, sheet

tripping and catastrophic break-up occur when the edges of the

rop are accelerated and separated from the main body faster than

he volumetric core. As shown in the figure, the break-up morphol-

gy determines the distribution of the secondary droplets gener-

ted from vortical and straining fragmentation mechanisms. The

roplet size at which the break-up process ends, due to the balance

etween fragmentation and surface tension forces, corresponds to

d

he Hinze scale Kolmogorov (1949) ; Hinze (1955) defined as 

 H 

∼
(

σ

ρc 

)3 / 5 

ε −2 / 5 . (3) 

The set of dimensionless numbers Re, We and characteristic

cales � EI , η, R H are utilized to construct the regime diagram pre-

ented in Fig. 3 for turbulent flows laden with a finite-size dis-

ersed phase. The strategy chosen in this work to perform sim-

lations of two-phase turbulence is based on the LEIS approach.

he particular methodology developed captures interfaces (topol-

gy deformations and break-up processes) on the computational

esh by selecting the grid resolution to be in the order of the

inze scale, while filters the small-scale turbulent fluctuations in

he bulk of the phases. In addition, as described in Section 4 and

ssessed in Section 5 , viscous near-interface flow motions are mod-

led instead of resolved to maintain the cost-efficiency of the LEIS

pproach. In contrast to LES strategies in which the flow and inter-

aces are filtered ( Labourasse et al., 2007; Toutant et al., 2009; Her-

mann, 2013 ), resulting in (potentially) large computational sav-

ngs at expenses of significantly complex mathematical formula-

ions and closure models, the approach presented in this work, al-

hough (presumably) more expensive by construction, is designed

o be efficient in a large portion of the Re − W e diagram (yel-

ow/green color region) by balancing computational cost, modeling

omplexity and accuracy. 

For illustration purposes 1 , Fig. 3 is constructed by consider-

ng homogeneous isotropic turbulence (HIT) laden with finite-size
iagram, resulting only in small variations of the location of the separation lines. 
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Fig. 3. Re − We DNS/LES regime diagram of carrier phase turbulence for HIT laden with finite-size droplets/bubbles. Size of dispersed phase is assumed to be in the order of 

the Taylor microscale for illustration purposes. The schematics (right column) represent the comparison of hydrodynamic, dispersed and computational scales for the three 

different regions identified. 
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t  
droplets/bubbles with characteristic diameters in the order of the

Taylor microscale λ, and with relative velocities determined by the

root-mean-square (rms) turbulent fluctuations U rms . Under such

assumptions, and knowing that for HIT the ratio between Kol-

mogorov and largest-size scales is η/� 0 ∼ Re −3 / 4 and the dissipa-

tion rate is given by ε = 15 νU 

2 
rms /λ

2 ( Pope, 20 0 0 ), the following

relations between dimensionless numbers and characteristic scales

are obtained 

R H 

/η ∼ Re 9 / 20 W e −3 / 5 and R H 

/� EI ∼ Re −3 / 10 W e −3 / 5 . (4)

These expressions are utilized to demarcate three different re-

gions in the Re − W e diagram. The first region (I) is named “LES

of Carrier Phase Turbulence with Quasi-Non-Deformable Dispersed

Phase” and corresponds to R H > � EI , where We is small and the

resulting interfacial structures could be captured with relatively

coarse grids. However, the condition �̄ < � EI imposes finer resolu-

tions. This is a region where immersed boundary methods (IBM)

are typically used for DNS studies ( Mittal and Iaccarino, 2005;

Lucci et al., 2010 ). In the second region (II), termed “DNS of Car-

rier Phase Turbulence with Deformable Dispersed Phase” and given

by R H < � EI & R H < η, We is considerably larger than Re , and

as a result the dynamics of the dispersed phase is dominated

by break-up processes. Consequently, interface-resolving simula-

tions are exceedingly expensive, and instead methodologies based

on sub-filter and/or sub-Hinze-scale modeling should be consid-

ered. Finally, the third region (III) is defined by η < R H < � EI 

and referred to as “LES of Carrier Phase Turbulence with De-

formable Dispersed Phase”. This portion of the diagram is where

our present strategy is envisioned to be efficient since the mesh

required to capture interfaces (down to the Hinze scale) cor-

responds to a LES resolution in the bulk of the phases, i.e.,

�̄ ∼ R H 

. Therefore, the combination of a coarser grid resolu-

tion and the modeling of the viscous near-interface flow motions

could result in significant computational savings within the LEIS

approach. 
. Large-eddy simulation equations 

At isothermal conditions without phase change, the nondimen-

ional equations of fluid motion describing immiscible two-phase

ncompressible flow are the continuity and Navier–Stokes equa-

ions given as Tryggvason et al. (2011) 

 · u = 0 , (5)

∂ u 

∂t 
+ ∇ · ( u u ) = 

1 

ρ

[ 
−∇p + 

1 

Re 
∇ · ( 2 μS ) + 

1 

W e 
f σ

] 
, (6)

here u and p are the velocity and pressure of the flow, ρ and

are the piecewise step functions of density and viscosity for

he one-fluid system, S = 

[∇ u + ( ∇ u ) T
 

]
/ 2 is the strain-rate tensor,

nd f σ = K n �δ( x − x �) is the force per unit volume due to sur-

ace tension with K = −∇ · n � and n � the interface curvature and

ormal vector, respectively, and δ( x − x �) the Dirac delta function

oncentrated at the interface location x �, which evolves according

o the velocity field as 

d x �

dt 
= u ( x �, t) . (7)

he derivation of this set of one-fluid conservation equations as-

umes that the interface is sharp with respect to the hydrodynamic

ow scales, and consequently the following nondimensional inter-

acial jump conditions are satisfied implicitly 

 

ρ] � = ρ2 − ρ1 and [ μ] � = μ2 − μ1 , (8)

 

u ] � = 0 and 

[ 
−p + 

1 

Re 
n � · 2 μS · n �

] 
�

= − 1 

W e 
K, (9)

ith subscripts 1, 2 and � denoting phase/fluid 1 and 2 and the

nterface between them, respectively. 

The LES equations are derived by applying a low-pass filter G

o the equations of fluid motion. The filter decomposes any flow
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Fig. 4. Schematics and notation of a fully-developed interfacial boundary-layer. 
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2 In HIT laden with finite-size droplets, based on DNS studies by Dodd and 

Jofre (2019) , the ratio between cross-sectional perimeter and mean boundary-layer 

thickness is πD 0 / ̄δ ∼ 20 . 
ariable φ( x , t) into large- φ and small-scale φ′ contributions, i.e.,

= φ + φ′ . The filtered part is defined as 

( x , t) = 

∫ 
�

G ( x , x 

′ , �) φ( x 

′ , t) d x 

′ , (10)

ith x and x ′ position vectors in the domain �, and � the char-

cteristic width of the filter. However, as introduced in Section 2 ,

he methodology chosen in this work to perform scale-resolving

tudies of two-phase turbulence is based on a particular version

f the LEIS approach such that the small flow scales in the bulk

f the phases are filtered, while interfaces are captured. Therefore,

he approach proposed is envisioned to be efficient in Region III

f Fig. 3 , and with filter sizes between the Kolmogorov and Hinze

cales. Under this assumption, the filtered interface evolution equa-

ion takes the form 

d x �

dt 
= u ( x �, t) , (11)

nd, since the interface topology is captured and the right-hand

ides involve no velocity terms, the filtered interfacial jump condi-

ions become 

 

ρ] � = ρ2 − ρ1 and [ μ] � = μ2 − μ1 , (12) 

 

u ] � = 0 and 

[ 
−p + 

1 

Re 
n � · 2 μS · n �

] 
�

= − 1 

W e 
σK. (13) 

inally, assuming that differentiation and filtering com-

ute ( Vasilyev et al., 1998; Marsden et al., 2002 ), the filtered

ontinuity and Navier–Stokes equations result in 

 · u = 0 , (14) 

∂ u 

∂t 
+ ∇ · ( u u ) = 

1 

ρ

[ 
−∇ p + 

1 

Re 
∇ ·

(
2 μS 

)
+ 

1 

W e 
f σ

] 
− ∇ · τ, 

(15) 

here, following Leonard’s decomposition ( Leonard, 1974 ), τ =
 u − u u is the SFS, or turbulent, stress tensor. The resolved scales

f LES φ are characterized by the filter applied to the conserva-

ion equations. In a general context, the filtering and discretization

perators are different ( Lund, 2003 ). However, in most cases the

patial discretization is chosen to be specifically the low-pass fil-

er ( Rogallo and Moin, 1984 ), and therefore τ is habitually referred

o as the subgrid-scale (SGS) tensor. Based on the particularization

f the work by Sagaut and Germano (2005) to incompressible two-

hase flows with no phase change, τ is not altered due to the

nterfacial discontinuity since [ u ] � = 0 , only (potentially) by the

odulation of turbulence resulting from the interaction between

he dispersed and carrier phases as discussed in Sections 4 and 5 . 
. Near-interface flow modeling 

The Kolmogorov scale, as described in Section 2 , characterizes

he smallest flow motions in single-phase unbounded turbulence.

n the case of two-phase systems, however, the discrete phase in-

roduces (potentially smaller) additional scales through two main

echanisms: (i) deformation and break-up processes, and (ii) ve-

ocity gradients and wakes in the vicinity of interfaces. For exam-

le, the formation of ligaments and films ( Martínez-Bazán et al.,

999 ) with sizes determined by the Hinze scale, and boundary-

ayer-like flow structures ( Dodd and Jofre, 2019 ) with thicknesses

ependent on the material and flow properties of the different

hases/fluids. 

In this section, since the LEIS approach proposed is designed

o capture the evolution of interfaces down to the Hinze scale,

he near-interface flow modeling is focused on the coarse-grained

epresentation of the small-scale, sheared flow motions generated

t the interfacial regions to largely improve the cost-effectiveness

f the calculations. In particular, the recent work by Dodd and

ofre (2019) quantified that the DNS of HIT laden with finite-size

roplets requires an order of magnitude larger number of grid

oints than its single-phase counterpart. Therefore, similar to LES

f wall-bounded flows in which models (or special boundary con-

itions) are required to reduce the stringent resolution require-

ents in the viscous near-wall region, the paragraphs below will

xplore the extension of wall modeling approaches ( Piomelli and

alaras, 2002; Kawai and Larsson, 2012 ) to two-phase turbulent

ows. 

The first step is to connect boundary-layer the-

ry ( Schlichting and Gersten, 2016 ) with the flow structure near

nterfaces. Following Csanady’s slip wall approach ( Csanady, 1997 ),

et us consider the mean velocity distribution in the vicinity of

n approximately flat interface 2 assuming fully-developed steady-

tate conditions, in the absence of inertial fluctuations, and with

niform shear stress in the interface-normal direction. As sketched

n Fig. 4 , let the interfacial boundary layer be conceptually divided

nto an inner and outer region such that: 

1. In the inner region, the mean velocity profile U( ̂  n ) and tur-

ulence statistics are presumed to depend only on the distance

rom the interface ˆ n , the kinematic viscosity of the carrier phase

c = μc /ρc , and the interfacial shear stress 

� = 

√ 

( t 1 · 2 μS · n �) 
2 + ( t 2 · 2 μS · n �) 

2 
, (16) 

here t 1 and t 2 are two orthogonal unit vectors that are tangent

o the interface. Note that in the absence of surface tension gradi-

nts (no Marangoni stresses) the shear stress is continuous across



6 L. Jofre, M.S. Dodd and J. Grau et al. / International Journal of Multiphase Flow 132 (2020) 103406 

 

 

 

 

 

 

U  

 

 

 

U  

 

 

 

 

 

 

 

 

 

 

U  

 

 

 

 

 

 

U  

U  

 

 

 

 

U  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

f

u  

w  

m  

t  

p  

t  

p  

u  

r  

r  

f  

u  

t  

O  

l  

u

5

 

H  

o  

d  

o  

t  

a

5

 

i  

t  

t  

t  

i  

ρ  

k  

p  

s  

l  

d  

f

 

e  

r  

r  

t  

 

g  

a  

i  

i  

p

 

fl  

b  

l  

a  

t  

ρ  
the interface, i.e., τ� = τ� c = τ�d . In addition, τ� is utilized to

characterize the friction velocity u τ�
≡ √ 

τ�/ρc and viscous length

scale δνc �
≡ νc 

√ 

ρc /τ� = νc /u τ�
, and nondimensionalize the vari-

ables U 

+ ≡ U/u τ�
and ˆ n + ≡ ˆ n u τ�

/νc on the carrier-phase side of

the interface. Upon dimensional analysis it can be shown that the

relative velocity U 

+ 
r ≡ U 

+ − U 

+ 
�

, with U 

+ 
�

≡ U �/u τ�
the interface

velocity in viscous units, is of the form 

 

+ 
r ≡ U 

+ − U 

+ 
� = f ( ̂  n 

+ ) . (17)

This inner region is composed of: (i) the viscous sublayer ( 0 <

ˆ n + < 5 ) where turbulent fluctuations are suppressed, molecular

viscosity dominates momentum transport, and the relative veloc-

ity increases linearly with distance from the interface, i.e., U 

+ 
r ≡

 

+ − U 

+ 
�

= ˆ n + ; (ii) the log-law region ( ̂  n + > 30 ), which overlaps

with the outer region and where momentum transport is dom-

inated by turbulent fluctuations (Reynolds stresses); and (iii) a

buffer layer ( 5 < ˆ n + < 30 ) transitional between (i) and (ii). The in-

ner region extends from the interface to an approximate distance

of ˆ n ≈ 0 . 15 δ, where δ is the thickness of the boundary layer de-

fined by the location in which the flow velocity is 99% of the free

stream velocity U ∞ 

, i.e., U(δ) = 0 . 99 U ∞ 

. 

2. In the outer region, the mean velocity profile and turbu-

lence statistics depend on the friction velocity u τ�
and the bound-

ary layer thickness δ, but not on the kinematic viscosity νc (mo-

mentum transport is entirely dominated by Reynolds stresses), and

therefore is function of 

 

+ 
∞ 

− U 

+ = g 

(
ˆ n 

δ

)
. (18)

The outer region extends the region 30 /Re τ�
< ˆ n /δ < 1 , with the

friction Reynolds number Re τ�
≡ u τ�

δ/νc characterizing the ratio

between the outer δ and inner δνc �
region length scales. 

3. In the overlap region, where the inner and outer

regions meet, an asymptotic matching argument based on

Eqs. (17) and (18) (similar to Millikan’s analysis ( Millikan, 1939 ))

implies the existence of a logarithmic relationship between the

mean velocity and distance from the interface expressed as 

 

+ − U 

+ 
� = 

1 

κ
ln ̂

 n 

+ + A 

+ for ˆ n /δνc �
→ ∞ (inner region) , (19)

 

+ 
∞ 

− U 

+ = − 1 

κ
ln 

ˆ n 

δ
+ B 

+ for ˆ n /δ → 0 (outer region) , (20)

where κ ≈ 0.41 is the von Kármán constant, and A 

+ and B + are

parameters that depend on the details of the interface and the

flow field, respectively. For example, in the case of solid bound-

aries, A 

+ ≈ 5 for smooth surfaces and B + ≈ 2 . 3 for zero-pressure-

gradient flows. Adding these two equations yields the slip law 

 

+ 
∞ 

− U 

+ 
� = 

1 

κ
ln Re τ�

+ A 

+ + B 

+ . (21)

Once the classical boundary-layer theory has been adapted to

interfacial flows, the final step is to propose a modeling strategy

for the near-interface region. As introduced in the sections above,

in this work we explore the utilization/extension of approaches

developed for wall-stress modeling. Many different methodologies

have been proposed in the past decades with the aim of repre-

senting various boundary-layer phenomena and with different bal-

ances between accuracy and computational cost; see, for example,

the recent review by Bose and Park (2018) for a detailed exposi-

tion. However, as a first analysis of this problem, we focus on a

simple model in which the interfacial shear stress is algebraically

related to the velocity at some distance ˆ n ∗ from the interface; in

algebraic closures, it is typically assumed that the law of the wall is

valid locally and instantaneously, and a no-penetration condition is

enforced for the wall-normal velocity. In the absence of pressure-

gradient effects on the boundary layer, the LES velocity profile can
e assumed to satisfy a logarithmic law ( Deardoff, 1970 ) in the

orm 

 ( ̂  n 

∗) − u � = u 

IM 

τ�

[ 

1 

κ
ln 

( 

ˆ n 

∗u 

IM 

τ�

νc 

) 

+ C + 

] 

, (22)

here u � and u IM 

τ�
are the unknown interface and interface-

odeled (denoted by superscript IM) friction velocities, respec-

ively, and C + is a normalized intercept coefficient particular to the

roblem. The modeling strategy therefore is to utilize the equa-

ion above to prescribe the velocity profile near the interface. The

roblem, however, is that there is one equation ( Eq. (22) ) and two

nknowns ( u � and u IM 

τ�
) rendering the system undetermined. To

emediate this problem, it is assumed that u � is dominated by the

esolved (large) scales, and consequently it can be approximated

rom the LES velocity at the grid point capturing the interface, i.e.,

 � ≈ u ˆ n =0 ; the implicit assumption is that the kinetic energy of

he inner region is much smaller than that of the outer region.

nce u � is obtained, the system is determined and the LES ve-

ocity at a matching location ˆ n ∗ in the range 30 < ˆ n + < 0 . 15 Re τ�
is

tilized to iteratively approximate u IM 

τ�
from Eq. (22) . 

. Numerical experiments 

This study uses results from DNS of droplet-laden decaying

IT ( Dodd and Ferrante, 2016 ). These simulations used the volume-

f-fluid (VoF) method to resolve the flow inside and outside the

roplets and modeled the surface tension effects. A full description

f the numerical methods that were used to simulate the turbulent

wo-phase flow is provided in references ( Baraldi et al., 2014; Dodd

nd Ferrante, 2014 ). 

.1. Initial conditions and droplet properties 

As detailed in Dodd and Ferrante (2016) , the system is initial-

zed at t = 0 with a velocity field generated by prescribing the

urbulent kinetic energy (TKE) spectrum, ensuring that the ini-

ial random velocity field is isotropic and divergence-free, and

hat the velocity cross-correlation spectra satisfy the realizabil-

ty conditions ( Schumann, 1977 ). The Reynolds number Re ref =
ref U ref L ref /μref = 6 . 42 × 10 4 based on the density ρref = ρc = 1

g/m 

3 and viscosity μref = μc = 1 . 33 × 10 −5 m 

2 /s of the carrier

hase, the reference velocity U ref = 26 . 7 m/s, and the HIT domain

ize L ref = 3 . 2 × 10 −2 m, is utilized to nondimensionalize the prob-

em. After one dimensionless time unit, defined as t ≡ L ref / U ref , the

roplets are introduced into the system with zero velocity and set

ree to interact with the turbulent flow field. 

Table 1 shows the dimensionless flow parameters at differ-

nt times t for the droplet-free flow (case A), where U rms is the

oot-mean-square (rms) turbulent fluctuations, ε is the dissipation

ate, � 0 ≈ L / 6 and τ� 0 
are comparable to the integral length and

ime scales, λ is the Taylor length scale, Re λ = U rms λ/νc and Re =
(3 / 20) Re 2 

λ
are the Reynolds number based on the Taylor and inte-

ral scales, respectively, and η and τη are the Kolmogorov length

nd time scales. The initial turbulent flow field is well resolved, as

ndicated by κmax η = 4 . 3 at t = 0 , where κmax = πN is the max-

mum resolved wavenumber and N = 1024 is the number of grid

oints in each direction of the computational grid. 

The dataset contains one simulation (case A) of droplet-free

ow and eight simulations (A 

� –H) of droplet-laden isotropic tur-

ulence corresponding to the cases listed in Table 2 . Case A 

� is a

imiting case in which the viscosity and density ratios are unity

nd the Weber number of the droplets is infinity. We analyze

he effects of varying the initial droplet Weber number ( W e =
c D 0 U 

2 
rms /σ ), droplet- to carrier-fluid density ratio ( ϕ = ρd /ρc ),
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Table 1 

Flow parameters (dimensionless) at initial time ( t = 0 ), droplet release time ( t = 1 ), time at which the solution is inde- 

pendent of the initial conditions ( t = 2 . 5 ), and final time ( t = 6 ) in case A. 

t U rms ε � 0 λ η Re Re λ � 0 / η τ� 0 τλ τ η

0.0 0.0509 1 . 15 × 10 −3 0.0965 0.0229 1 . 35 × 10 −3 844 75 71.7 1.89 0.45 0.116 

1.0 0.0457 6 . 10 × 10 −4 0.1038 0.0283 1 . 58 × 10 −3 1036 83 65.8 2.27 0.62 0.160 

2.5 0.0397 4 . 49 × 10 −4 0.1030 0.0286 1 . 70 × 10 −3 784 72 60.5 2.60 0.72 0.186 

6.0 0.0285 2 . 18 × 10 −4 0.1082 0.0295 2 . 04 × 10 −3 437 54 53.0 3.80 1.04 0.268 

Table 2 

Droplet properties (dimensionless) at release time t = 1 . 0 . 

Case We ϕ ≡ ρd / ρc γ ≡ μd / μc τ d τd /τ� 0 τ d / τ η

A – – – – – –

A � ∞ 1 1 – – –

B 0.1 10 10 35.9 15.8 225 

C 1.0 10 10 35.9 15.8 225 

D 5.0 10 10 35.9 15.8 225 

E 1.0 1 10 3.6 1.6 23 

F 1.0 100 10 359.0 158.0 2250 

G 1.0 10 1 41.8 18.4 261 

H 1.0 10 100 34.9 15.4 219 

Table 3 

Viscous scaling parameters (dimensionless) at t = 2 . 5 : τ� is the shear stress at the 

interface, u τ�
is the interfacial friction velocity in the carrier phase, δνc �

is the inter- 

facial viscous length scale in the carrier phase, and δνc �
/δνc 

is the interfacial viscous 

length scale in the carrier phase normalized by the mean viscous length scale of the 

carrier phase. 

Case τ� u τ�
δνc �

δνc �
/δνc 

A � 4 . 85 × 10 −5 6 . 96 × 10 −3 2 . 24 × 10 −3 1.020 

B 2 . 45 × 10 −4 1 . 57 × 10 −2 9 . 94 × 10 −4 0.453 

C 2 . 41 × 10 −4 1 . 55 × 10 −2 1 . 00 × 10 −3 0.458 

D 2 . 33 × 10 −4 1 . 53 × 10 −2 1 . 02 × 10 −3 0.465 

E 1 . 77 × 10 −4 1 . 33 × 10 −2 1 . 17 × 10 −3 0.533 

F 3 . 40 × 10 −4 1 . 84 × 10 −2 8 . 45 × 10 −4 0.385 

G 1 . 40 × 10 −4 1 . 18 × 10 −2 1 . 31 × 10 −3 0.599 

H 3 . 40 × 10 −4 1 . 84 × 10 −2 8 . 45 × 10 −4 0.386 
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i  
nd droplet- to carrier-fluid viscosity ratio ( γ = μd /μc ) in the

hree sets BCD, CEF, and CGH, respectively, while keeping the other

wo parameters constant. In cases B, C, and D, We increases from

.1 to 5.0 by decreasing the surface tension coefficient. In cases

, E, and F, ϕ increases from 1 to 100 by increasing ρd . In cases

, G, and H, γ increases from 1 to 100 by increasing μd . For all

ases, the droplet volume fraction is αv = 0 . 05 , the initial number

f droplets is N d = 3130 , and the initial nondimensional droplet

iameter is D 0 = 0 . 03125 , which is equal to 20 ηt=1 (or equiva-

ently 1.1 λt=1 ), where ηt=1 and λt=1 are the Kolmogorov and Tay-

or length scales at the time the droplets are released in the flow

 t = 1 ). This yields a droplet resolution of 32 grid points per diam-

ter. 

.2. Conditional averaging methodology 

Motivated by studying the flow structure near the droplet sur-

ace, we introduce a conditional averaging procedure to compute

tatistical quantities conditioned on distance from the interface.

tarting with the VoF field, we use the marching cubes algo-

ithm ( Lewiner et al., 2003 ) to compute a level set (LS), or signed

istance function, representing the shortest distance to the inter-

ace, which has the property φ = 0 at the interface, φ < 0 in the

roplet fluid, and φ > 0 in the carrier fluid. Fig. 6 shows the VoF

nd LS fields in an x –y plane at t = 2 . 5 . Note that the computa-

ional cost of the algorithm to compute φ scales as (| φ| max N ) 3 ,

here | φ| max is the maximum search distance for computing φ
nd N is the number of grid points in each spatial direction. There-
ore, to limit the computational cost, while still capturing most of

he inner region of the interfacial boundary layers, we set | φ| max 

o approximately two to three droplet diameters depending on the

elative position of the neighboring droplets. This limitation ex-

lains the white regions in Fig. 6 (b). 

.3. Viscous scales 

We have defined in Section 4 the viscous scales that charac-

erize the magnitude of the velocities and length sizes near the

roplet surface. These scales serve as (i) a measure of the small-

st hydrodynamic scales at the droplet surface, and (ii) a reference

alue for expressing the quantities in viscous units. A fundamen-

al question we aim to address is how does δνc �
compare to the

mallest length scale of the surrounding turbulent flow, i.e., the

olmogorov scale of the carrier phase ηc . To make the comparison

irect, we compute the viscous length scale of the carrier phase

νc = νc 
√ 

ρc /τc , where the mean shear stress for canonical de-

aying isotropic turbulence is τc = μc 

√ 

(4 ε c ) / (15 νc ) ( Pope, 20 0 0 ).

ote that, in this context, δνc is simply an alternative definition

f the Kolmogorov scale. The relationship between δν and η is

ν = (15 / 4) 1 / 4 η ≈ 1 . 39 η. 

Table 3 shows that δνc �
/δνc in case A 

� is close to unity as would

e expected for canonical decaying HIT, which indicates that the

ffect of initial conditions is undetectable at t = 2 . 5 . If we com-

are δνc �
/δνc for case A 

� to the droplet-laden cases B–H, δνc �
/δνc 

or the droplet-laden cases is consistently one-third to one-half as

arge. Fig. 7 shows the time evolution of δνc �
normalized by δνc .

or all cases and all times, δνc �
/δνc is less than unity, therefore

he smallest length scale is always located at the droplet surface

ue to the induced velocity gradient. Looking at the time evolu-

ion of δνc �
/δνc , we recall that the droplets are released from rest

t t = 1 , leading to an instantaneous increase in τ� which explains

he minimum in δνc �
/δνc . However, after roughly one integral time

cale ( t ≥ 1 + τ� ≈ 2 . 8 ), δνc �
/δνc reaches a quasi-stationary value,

uggesting that the effect of the initial conditions is forgotten. 

The effects of varying We , ϕ, and γ on δνc , � are as follows.

ig. 7 (a) shows that as We increases δνc �
/δνc increases. The de-

rease in δνc �
/δνc for case B at later times is explained by droplet

oalescence. Droplet coalescence produces velocity fluctuations at

he droplet scale through the power of the surface tension, and

ecause the interfacial surface energy scales as W e −1 , the effect is

ost pronounced for the lowest Weber number case B ( W e = 0 . 1 ).

s the density ratio increases, depicted in Fig. 7 (b), δνc �
/δνc de-

reases, showing that higher inertia droplets have larger velocity

radients and smaller length scales near their surfaces than lighter

roplets. Fig. 7 (c) shows that increasing the viscosity ratio γ leads

o a decrease in δνc �
/δνc . This suggests that in the solid particle

imit ( γ → ∞ ), δνc �
/δνc would be minimum, implying that, from a

omputational perspective, solid particles are the most costly dis-

ersed medium to simulate in terms of resolving the velocity gra-

ient near the particle surface. 

After one integral time scale, δνc �
/δνc ranges between 0.35 and

.5 depending on the case, indicating that δνc �
is two to three

imes smaller than the smallest length scale in the surround-

ng turbulent flow. Consequently, to perform fully-resolved DNS of
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Table 4 

Hinze scale (dimensionless) and its ratio with the characteristic turbulent and LES 

length scales at t = 2 . 5 with ρc = 1 and ε = 4 . 49 × 10 −4 . 

Case R H R H / η R H / � EI R H / � 0 

A � 0 0 0 0 

B 2 . 26 × 10 −1 132.94 13.14 2.19 

C 5 . 68 × 10 −2 33.41 3.30 0.55 

D 2 . 16 × 10 −2 12.71 1.26 0.21 

E 5 . 68 × 10 −2 33.41 3.30 0.55 

F 5 . 68 × 10 −2 33.41 3.30 0.55 

G 5 . 68 × 10 −2 33.41 3.30 0.55 

H 5 . 68 × 10 −2 33.41 3.30 0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Schematic (sizes not proportionally scaled) illustrating the layers near the 

droplet interface used for conditional averaging. 

Table 5 

Parameters inferred from the DNS dataset for the assessment of the in- 

terfacial boundary-layer flow structure at t = 2 . 5 : (i) ˆ n + @ τ+ 
νc 

/τ+ 
t ≈ 1 is 

the distance from the interface (viscous units) at which τ+ 
νc 

and τ+ 
t are 

approximately equal, (ii) κ and (iii) C + are the inverse of the slope and 

intersection constant, respectively, of the approximated log-law region 

curves (logarithmic scale). Abbreviation AVG indicates the average value 

of cases B–H. 

Case ˆ n + @ τ+ 
νc 

/τ+ 
t ≈ 1 κ C + 

B 10 0.41 5.8 

C 9 0.40 5.1 

D 8 0.41 4.6 

E 12 0.42 4.4 

F 11 0.41 4.7 

G 8 0.42 5.9 

H 9 0.38 4.8 

AVG 10 0.41 5.1 
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droplet-laden flows (ignoring breakup and coalescence for the time

being), there is an additional microscale that must be resolved that

is significantly smaller than the Kolmogorov scale. For the cases

considered here, the number of grid points required on a fixed

mesh is roughly ten to thirty (2 3 –3 3 ) times larger than single-

phase isotropic turbulence at the same Reynolds number. This fact,

in part, explains why a numerical resolution of κmax η = 4 . 3 was

used to produce this DNS dataset. 

5.4. Hinze scales 

The effect of the initial problem setup is forgotten at dimen-

sionless time t ≈ 2.5, as discussed in Section 5.3 , when quasi-

stationary conditions are achieved in terms of viscous scales. The

analyses presented from this point forward, thus, will focus on the

instantaneous dataset at t = 2 . 5 . 

The dataset considered in this work (cases B-H) is found in

region III of the Re − W e DNS/LES regime diagram introduced in

Section 2 (at t = 2 . 5 , Re = 784 and We ranges between 0.1 and

5), and is therefore suitable for exploring and assessing the per-

formance of the near-interface flow modeling approach presented.

The nondimensional value of the characteristic turbulent and LES

length scales at t = 2 . 5 for cases A 

� -H correspond to η = 1 . 70 ×
10 −3 , � EI = 1 . 72 × 10 −2 , and � 0 = 1 . 03 × 10 −1 , and the Hinze scale

and associated ratios are listed in Table 4 . The ratio between Hinze

and anisotropic turbulent scales is R H 

/� EI ∼ O(1 − 10) , indicating

that LES meshes with resolutions in the order of � EI would be suf-

ficient to capture the evolution of the interfaces down to the Hinze

scale. In addition, from a spatial resolution perspective, the result-

ing LES mesh combined with the modeling of the small scales in

the interfacial boundary-layer regions would potentially reduce the

computational cost of studying two-phase turbulence phenomena

by three orders of magnitude since the ratio between Kolmogorov

and anisotropic turbulent scales is � EI /η ∼ O(10) . 

5.5. Assessment of the interfacial boundary-layer flow structure 

The first step toward validating an interfacial flow modeling ap-

proach for LES is to characterize the flow structure in the vicin-

ity of interfaces. For this objective, the DNS dataset extracted from

cases B-H at dimensionless time t = 2 . 5 is analyzed by considering

the spatially-averaged velocity field in the near-interface regions.

The procedure to obtain spatially-averaged velocities is composed

of three steps: (i) for each grid point, calculate the level-set dis-

tance with respect to the closest interface as depicted in Fig. 6 (b),

(ii) spatially average the velocity field conditioned on the distance

to the interface, as illustrated in Fig. 5 , by making use of the level-

set distance previously computed, and (iii) decompose the result-

ing spatially-averaged velocity vectors into normal and tangential

parts with respect to the interface to extract the tangential compo-

nent U 

+ . In particular, focus is placed on the characteristics of the

interfacial boundary layers generated by the interaction between
he turbulent flow and droplets in terms of normalized relative ve-

ocity and fractional stresses as depicted in Figs. 8 and 9 , respec-

ively, and quantified in Table 5 . 

The relative velocity U 

+ 
r ≡ U 

+ − U 

+ 
�

profiles (viscous units),

patially-averaged conditioned on the distance to the interface

long interface-normal directions ˆ n + , are shown in Fig. 8 for cases

-H at t = 2 . 5 and compared to the theoretical (i) linear relation

 

+ 
r = ˆ n + and (ii) logarithmic curve U 

+ 
r = (1 /κ) ln ̂  n + + C + , with

= 0 . 41 and C + = 5 . 1 corresponding to the average values approx-

mated in Table 5 . Based on these results, three main observations

an be extracted: (i) similar to turbulent boundary layers in wall-

ounded flows, the linear relation U 

+ 
r = ˆ n + is satisfied for cases B-

 in the range ˆ n + � O(1) ; (ii) in all cases, a log-law region of the

orm U 

+ 
r = (1 /κ) ln ̂  n + + C + satisfactorily approximates the relative

elocity profiles for ˆ n + � O(10) ; and (iii) as tabulated in Table 5 ,

he variability of the inferred von Kármán constants κ and inter-

ept coefficients C + is small between cases, taking the average val-

es of κ = 0 . 41 and C + = 5 . 1 in particular. 

Profiles of the near-interface fractional contributions of

he viscous τ+ 
νc 

= (νc /u 2 τ�
) 〈 d u/d ̂  n 〉 and Reynolds stresses

+ 
t = (−1 /u 2 τ�

) 〈 u ′ v ′ 〉 , i.e., turbulent velocity fluctuations, to

he total stress τ+ 
�

= τ+ 
νc 

+ τ+ 
t for case C (as representative of the

ataset B-H) are shown in Fig. 9 . The profiles depicted in the figure

emarcate two clearly separated regions with a rapid transition

etween them. The total stresses in the first region ( ̂  n + � 10 ) are

ominated by molecular viscosity effects since τ+ 
νc 

� τ+ 
t , while

he second region ( ̂  n + � 10 ) is characterized by large Reynolds

tresses, related to the appearance of significant turbulent velocity

uctuations, and resulting in τ+ 
ν � τ+ . The transition point be-
c t 
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Fig. 6. Instantaneous contours in the x –y plane of (a) the VoF field, C = C(x , t) , and (b) the level-set field, φ = φ(x , t) , for case C at t = 2 . 5 . 

Fig. 7. Time evolution (dimensionless) of the interfacial viscous length scale in the carrier phase δνc �
(t) normalized by the mean viscous length scale of the carrier phase 

δνc 
(t) for varying (a) Weber number, (b) density ratio, and (c) viscosity ratio. 

t

a  

f

 

c  

t  

t  

v  

o  

o  

O  

o  

d  

t  

t  

i

ween these two regions, defined as the location ˆ n + at which τ+ 
νc 

nd τ+ 
t are approximately equal, is found in the range ˆ n + ≈8–12

or cases B-H as listed in Table 5 . 

The analysis conducted in this section based on DNS data from

ases B-H indicates therefore that, similar to the inner region of

urbulent boundary layers in wall-bounded flows, the flow struc-

ure near interfaces can be separated in three distinct layers: (i) a

iscous sublayer, ˆ n + � O(1) , where molecular viscosity dominates
ver turbulent fluctuations, and characterized by a linear increase

f the relative velocity with ˆ n + given as U 

+ 
r = ˆ n + ; (ii) a buffer layer,

(1) � ˆ n + � O(10) , in which the momentum transport by means

f molecular viscosity and turbulent fluctuations is of the same or-

er, i.e., τ+ 
νc 

/τ+ 
t ∼ 1 ; and (iii) a log-law region, ˆ n + � O(10) , where

urbulent fluctuations are the main mechanism for momentum

ransport, and where the relative velocity can be efficiently approx-

mated by a logarithmic curve of the form U 

+ 
r = (1 /κ) ln ̂  n + + C + . 
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Fig. 8. Relative velocity U + r ≡ U + − U + 
�

as function of normal distance to the interface ˆ n + (viscous units) spatially-averaged at dimensionless time t = 2 . 5 for varying (a) 

Weber number, (b) density ratio, and (c) viscosity ratio. The dashed-dotted lines correspond to the linear relation U + r = ̂  n + and the logarithmic curve U + r = (1 /κ) ln ̂  n + + C + 

with κ = 0 . 41 and C + = 5 . 1 . 

Fig. 9. Profiles (viscous units) of the fractional contributions of the viscous τ+ 
νc 

and 

Reynolds stresses τ+ 
t to the total stress τ+ 

�
. Results obtained from spatially-averaged 

data at dimensionless time t = 2 . 5 for case C as representative of the dataset. 
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5.6. A priori analysis of the near-interface flow modeling approach 

After analyzing the mean-velocity profile in the vicinity of in-

terfaces by utilizing DNS data extracted from cases B-H at dimen-

sionless time t = 2 . 5 , the performance of the near-interface flow

modeling approach proposed in Section 4 is a priori analyzed. For

each case, the methodology followed is composed of two steps:
1) explicitly filter the DNS velocity field, and (2) iteratively recon-

truct the interface-modeled friction velocity u IM 

τ�
by means of the

lgebraic closure model introduced in Eq. (22) . 

The details of the filtering and reconstruction steps are as fol-

ows. The filtering operation is carried out by means of a second-

rder Gaussian filter defined as Sagaut and Grohens (1999) 

( x ) = φ( x ) + 

�̄2 

24 

∂ 2 φ

∂x 2 
j 

+ O( ̄�4 ) , (23)

here φ and φ correspond to the velocity components of the un-

ltered DNS ( u, v, w ) and filtered LES ( u , v , w ) fields at dimension-

ess time t = 2 . 5 , and the dimensionless filter width is chosen to

e �̄ = 1 / 64 ∼ � EI ; as a reference, the dimensionless grid resolu-

ion of the DNS dataset is � = 1 / 1024 . Next, the interface veloc-

ty u � is approximated by the spatially-averaged LES velocities at

he grid points capturing the interfaces, i.e., u � ≈ u ˆ n =0 . Finally, the

nterface-modeled friction velocities u IM 

τ�
are iteratively approxi-

ated from the algebraic model defined in Eq. (22) , with κ =
 . 41 and C + = 5 . 1 (average values of Table 5 ), at the matching lo-

ations ˆ n ∗u IM 

τ�
/νc = ˆ n + ≈ 30 , ˆ n ∗u IM 

τ�
/νc = ˆ n + ≈ 60 , and ˆ n ∗u IM 

τ�
/νc =

ˆ  + ≈ 90 . The values between parenthesis correspond to the nor-

alized relative errors with respect to u τ�
(listed in Table 3 ) and

alculated as ε rel ≡ 100 × | u IM 

τ�
− u τ�

| /u τ�
. 

The results in terms of spatially-averaged interface velocities u �
nd interface-modeled friction velocities u IM 

τ�
at different matching

ocations ˆ n ∗ are summarized in Table 6 . Three main observations

an be extracted for the set of cases B–H studied: (i) the approx-
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Table 6 

Results of the a priori near-interface flow modeling analysis at t = 2 . 5 for cases B–H. The interface velocity is approximated by the spatially-averaged LES velocities 

at the grid points capturing the interfaces, i.e., u � ≈ u ˆ n =0 . The interface-modeled friction velocities u IM 

τ�
are iteratively approximated from the algebraic model defined 

in Eq. (22) , with κ = 0 . 41 and C + = 5 . 1 , at the matching locations ˆ n ∗u IM 

τ�
/νc = ̂  n + ≈ 30 (left), ˆ n ∗u IM 

τ�
/νc = ̂  n + ≈ 60 (center), and ˆ n ∗u IM 

τ�
/νc = ̂  n + ≈ 90 (right). The values 

between parenthesis correspond to the normalized relative errors with respect to u τ�
(listed in Table 3 ) and calculated as ε rel ≡ 100 × | u IM 

τ�
− u τ�

| /u τ�
. 

Case u � u IM 

τ�
@ ˆ n + ≈ 30 u IM 

τ�
@ ˆ n + ≈ 60 u IM 

τ�
@ ˆ n + ≈ 90 

B 2 . 27 × 10 −2 1 . 64 × 10 −2 (4.2%) 1 . 63 × 10 −2 (4.0%) 1 . 63 × 10 −2 (3.8%) 

C 2 . 33 × 10 −2 1 . 57 × 10 −2 (1.4%) 1 . 57 × 10 −2 (1.4%) 1 . 57 × 10 −2 (1.5%) 

D 2 . 68 × 10 −2 1 . 48 × 10 −2 (3.0%) 1 . 49 × 10 −2 (2.9%) 1 . 49 × 10 −2 (2.7%) 

E 4 . 91 × 10 −2 1 . 26 × 10 −2 (5.5%) 1 . 26 × 10 −2 (5.4%) 1 . 26 × 10 −2 (5.2%) 

F 1 . 12 × 10 −2 1 . 80 × 10 −2 (2.4%) 1 . 80 × 10 −2 (2.3%) 1 . 80 × 10 −2 (2.2%) 

G 3 . 04 × 10 −2 1 . 22 × 10 −2 (3.5%) 1 . 22 × 10 −2 (3.2%) 1 . 21 × 10 −2 (2.9%) 

H 1 . 91 × 10 −2 1 . 89 × 10 −2 (2.5%) 1 . 89 × 10 −2 (2.8%) 1 . 90 × 10 −2 (3.0%) 
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mation of u � as the average value of u ˆ n =0 over the grid points

apturing the interfaces is an effective strategy as it provides good

ensitivity to the variations particular to each simulation; (ii) for

ach case, the u IM 

τ�
values do not vary significantly as a function of

atching location ˆ n ∗ within the log-law region; and (iii) in general,

he relative reconstruction errors εrel are (approximately) below

%. Therefore, these results indicate that, based on a priori studies,

he near-interface flow modeling approach proposed in this work

as the potential to efficiently reduce the cost of performing LES

f two-phase turbulence. 

. Summary, conclusions and future work 

The computational cost of studying turbulence in two-phase

ystems can be notably reduced by means of LES approaches, in

hich the large eddies are resolved while their interaction with

he small-scale flow motions are modeled. Away from phase in-

erfaces, LES has proven to be (over the past decades) an attrac-

ive strategy able to reduce the simulation expense, in terms of

rid points per spatial dimension N, to a linear relation with the

eynolds number given as N 

3 ~ Re ; as a reference, the cost of per-

orming DNS scales as N 

3 ~ Re 9/4 . However, analogously to the case

f solid walls in single-phase turbulence, the performance of the

ethodology is significantly reduced due to the necessity to prop-

rly resolve with fine meshes the boundary layers generated at in-

erfaces. 

The near-interface flow modeling approach presented in this

ork, therefore, aims at keeping the cost of LES linear with re-

pect to the Reynolds number when phase/fluid interfaces inter-

ct with turbulent flows. The approach is based on (i) low-pass

ltering the equations of fluid motion to resolve the large scales,

ii) utilize an LES model to close the resulting filtered equations,

iii) capture with a relatively coarse grid the evolution of inter-

aces down to the Hinze scale, and (iv) use models similar to the

nes utilized in wall-modeling of single-phase turbulence to accu-

ately model the near-interface motions, and therefore enlarge the

esh resolution near interfaces. The first part of the methodology

s to connect boundary-layer theory with the flow structure near

nterfaces by following Millikan’s theoretical analysis applied to the

ase of interfaces (conceptualized as slip walls). The second part

onsists in proposing models, inspired from wall-modeling ideas in

he present work, to represent the boundary-layer flow structure in

he vicinity of interfaces. 

As a first exploratory work, a straightforward model in which

he interfacial-shear stress is algebraically related to the velocity

s a function of distance to the interface, viz. logarithmic law ap-

lied to interfacial flow, has been chosen and a priori analyzed. The

esults obtained, based on DNS data extracted from HIT laden with

nite-size droplets for different Weber numbers and ratios of car-

ier and dispersed phase densities and viscosities, indicate that the

pproach proposed has the potential to efficiently reduce, up to
everal orders of magnitude depending on the ratio between Kol-

ogorov, Hinze and anisotropic turbulent length scales (approxi-

ately one thousand times in this work), the cost of performing

ES of two-phase turbulence by modeling (instead of resolving) the

iscous near-interface flow motions. 

Ongoing work is focused on further assessing the performance

f the modeling strategy by means of a priori analyses of differ-

nt canonical two-phase turbulent flows and closure models in the

ontext of HF simulations. In the mid- long-term, work will con-

ider a posteriori assessments of the near-interface flow modeling

n LES studies of interfacial problems, such as turbulent two-phase

ets, waves and bubbly flow. 
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