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The smallest hydrodynamic length scales in two-phase turbulence are located at the interface between
phases, or fluids, as a result of two-way coupling phenomena. Typically, these interface-generated scales
are several times smaller than the dissipative scales in the surrounding bulk flow identified by Kol-
mogorov's 1941 theory. Consequently, to properly capture these interface-generated small scales with
sufficiently fine resolutions, the computational cost of performing large-eddy simulations of two-phase
turbulent flow increases significantly from its (single-phase) theoretical optimum and toward values on
the order of the direct numerical simulation of turbulence. Therefore, to maintain the cost of scale-
resolving approaches linear with respect to the Reynolds number, this work investigates the modeling of
the small-scale fluid motions in the vicinity of the viscous near-interface region of two-phase turbulent
flows. Given the resemblance between the flow structures in the near-interface regions and those found
in the boundary layers of turbulent wall-bounded flow, the modeling methodology proposed is inspired
by ideas developed for turbulent flows interacting with solid walls, but modified to capture slip-velocity
effects between phases. The performance of the approach is a priori assessed by utilizing data from di-
rect numerical simulations of decaying isotropic turbulence laden with droplets of super-Kolmogorov size,
demonstrating its computational feasibility and potential for reducing the cost of large-eddy simulation

studies of two-phase turbulence.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of turbulence with two-phase interfaces encom-
passes very complex multiscale flow phenomena of interest in a
wide range of engineering and scientific applications, like for ex-
ample rain formation in clouds (Grabowski and Wang, 2013), spray
atomization in combustors (Sirignano, 1983; Faeth et al., 1995;
Jofre and Urzay, 2020), and microbubble generation in biomedical
and processing technologies (Rodriguez-Rodriguez et al., 2015). In
such systems, the dispersed phase typically undergoes significant
rates of deformation and break-up/coalescence events due to vorti-
cal and straining flow motions, and/or external forces, that greatly
increase the surface area between phases. In these near-interface
regions, turbulence is modulated as a result of two-way coupling
effects (Dodd and Ferrante, 2016), favoring low-enstrophy/high-
dissipation motions with characteristic sizes significantly smaller
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than the dissipative scales in the bulk of the carrier phase (Dodd
and Jofre, 2018; 2019).

The inherent nonlinearity of the flow mechanisms encountered,
together with the numerous challenges associated with perform-
ing experiments, renders computational approaches an indispens-
able tool for the analysis, design and optimization of two-phase
turbulence phenomena in industrial and natural problems. In this
regard, direct numerical simulation (DNS) of turbulent two-phase
flows (Elghobashi, 2019), resolving all length and time scales of
turbulence interacting with interfaces, is now feasible for moderate
Reynolds numbers or for reduced computational complexity, viz.
interfaces undergoing small deformation and/or limited number
of droplets/bubbles. Selected examples of DNS studies in the past
decade include mixing layers and free-surface problems (Agbaglah
et al,, 2017; Almagro et al.,, 2017; Ling et al.,, 2019; Deike et al.,
2016), bubbly flows (Balcazar et al., 2015; Lin et al.,, 2018; Chan
et al.,, 2019), sprays and atomization processes (Gorokhovski and
Herrmann, 2008; Shinjo and Umemura, 2010; Desjardins and
Pitsch, 2010), and multiphysics flows (Prosperetti, 2017; Lu et al.,
2017; Rasthofer et al., 2019; Soligo et al., 2019). The flexibility
and degree of detail of such high-fidelity (HF) calculations pro-
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vides insightful information for the characterization of the under-
lying flow physics. In addition, the results obtained can be used
as reference data for the development of coarse-grained mod-
els useful in the design and optimization of engineering systems.
However, the computational cost of these fine-grained simula-
tions are extraordinarily high, typically requiring large allocations
in powerful computing facilities. In particular, the necessity of
high-performance computing (HPC) resources arises from the strin-
gent spatio-temporal resolutions required to capture for sufficient
long periods of time, e.g., large-eddy turnover time in turbulence-
dominated flows, the wide range of turbulent length and time
scales (Moin and Mahesh, 1998; Tryggvason et al., 2013) and the
temporal evolution of interfaces (Jofre et al, 2010; 2014; 2015;
Valle et al., 2020) as they change topology and break-up/coalesce.

The computational cost of studying turbulence can be sig-
nificantly reduced by means of large-eddy simulation (LES) ap-
proaches (Rogallo and Moin, 1984; Lesieur and Metais, 1996;
Meneveau and Katz, 2000), in which the small-scale motions
in the bulk of the flow are modeled (Jofre et al, 2018;
2019) instead of resolved. Although much less explored than
in single-phase turbulence, the extension of LES strategies to
multiphase flow problems started two decades ago marked
by the gradual migration from Reynolds-Averaged Navier-Stokes
(RANS) modeling to scale-resolving turbulence simulation includ-
ing LES and its multiphase flow sub-variants (Lakehal, 2018):
(i) dispersed-flow LES [referred to as large-eddy and structure
simulation (LESS)], (ii) and interfacial-flow LES [referred to as
large-eddy and interface simulation (LEIS)]. This transition was
mainly driven by the limited predictive performance of sta-
tistical turbulence modeling in multiphase flows. The deriva-
tion of the LESS equations is detailed in the work by Lakehal
et al. Lakehal et al. (2002), and the resulting formulation has been
applied, based on two-fluid approaches (Crowe et al., 1996), to
study bubbly flow (Deen et al., 2001), sprays (Sirignano, 2002),
particle-laden flow (Capecelatro and Desjardins, 2013), and buoy-
ant plumes (Yang et al., 2016). While the LESS variant is best suited
for a range of problems in which one of the phases is dispersed
in the other, LEIS (Lakehal, 2010) provides superior accuracy at
expenses of higher computational costs by directly resolving the
interface dynamics and turbulent motions down to the grid res-
olution. This work focuses on the study of two-phase flows in
which the carrier and dispersed phases are separated by an in-
terface and interact with each other. Consequently, the LEIS strat-
egy is selected to develop the near-interface modeling approach
due to its higher accuracy. Over the past years, different mathe-
matical frameworks have been proposed within the LEIS formal-
ism based on directly filtering the flow (Labourasse et al., 2007;
Klein et al., 2019) and interfacial (Toutant et al., 2009; Herrmann,
2013) regions, and proposing appropriate subfilter scale (SFS) mod-
els (Klein et al., 2020; Saeedipour et al., 2019; Hasslberger et al.,
2020) to represent the interface dynamics and stresses (Aniszewski
et al., 2012; Saeedipour and Schneiderbauer, 2019). LEIS has been
applied, for example, to calculate turbulent gas-liquid flows involv-
ing large-scale sheared interfaces (Lakehal and Liovic, 2011), clus-
tering of bubbles in wall-bounded flows (Lakehal, 2017), and pri-
mary breakup in atomization processes (Kaario et al., 2013).

Away from solid walls, LES has proven to be a computation-
ally tractable approach to simulate single-phase, unsteady turbu-
lent flows (Masquelet et al., 2017; Domino et al., 2019) over the
past decades. However, as analyzed in a recent DNS study of
isotropic turbulence laden with finite-size droplets by Dodd and
Jofre (2019), the smallest hydrodynamic scales in turbulent two-
phase flows are located at the interfacial regions, presenting char-
acteristic sizes that are 2-3 times smaller than that of the dissipa-
tive Kolmogorov scales in the surrounding bulk flow. In particular,
the flow topologies in these regions resemble those found in wall-

bounded flows. Therefore, to bypass the near-interface stringent
resolution requirements and make LES approaches cost-efficient for
the study of turbulent two-phase flows, this work focuses on the
derivation of the theoretical framework and a priori analyses of
interfacial layer flow models based on ideas inspired from wall-
modeled LES approaches (Piomelli and Balaras, 2002; Kawai and
Larsson, 2012). To that end, this paper is organized as follows. First,
in Section 2, important dimensionless numbers and characteris-
tic scales in two-phase turbulence are introduced. A description
of the LES (filtered Navier-Stokes) equations is given in Section 3.
In Section 4, the derivation of the near-interface flow modeling
approach is presented. Next, in Section 5, performance tests and
experiments are discussed. Finally, in Section 6, the work is con-
cluded and future directions are proposed.

2. Dimensionless numbers and characteristic scales

The dynamics of multiphase flows is characterized by a variety
of nondimensional numbers (Tryggvason et al., 2011; Jofre et al.,
2020). Their importance depends on the physical mechanisms driv-
ing the flow. In turbulent flows, the ratio between inertial and vis-
cous forces is characterized by the Reynolds number defined as
R LU LU, o

w v

where L and U are characteristic length and velocity scales, and p,
u and v = u/p are the density and dynamic and kinematic vis-
cosities, respectively, of one of the phases. For inertia-dominated
two-phase flows, pressure differences scale proportionally to pU?,
and as a result the normal stress condition at interfaces introduces
the dimensionless Weber number expressing the ratio of inertia to
surface tension forces given by

2
We = & (2)

o

with o the surface tension coefficient. Eliminating the velocity U
between the Reynolds and Weber numbers results in the Ohne-
sorge number Oh = u/,/pol, which compares viscous and capil-
lary forces.

The Reynolds and Weber numbers define a two-dimensional (2-
D) space where different turbulent two-phase regimes can be dis-
tinguished. Associated to the different regimes are a set of char-
acteristic scales related to the energy cascade and break-up pro-
cesses. As presented in the paragraphs below, the flow mechanisms
describing their behavior are described by the turbulent eddy sizes
and bubble/droplet length scales.

As conceptualized by Richardson’s (statistically steady-
state) view of the energy cascade for single-phase
flows (Richardson, 1922), turbulence can be considered to be
composed of eddies of different sizes ¢. The eddies in the largest-
size range are characterized by the length scale ¢3, which is
comparable to the integral flow scale £~ 6¢g. These turbulent
motions are relatively slow, but very energetic, dominated by in-
ertial effects, and unstable. As a result, they break up, transferring
their energy to somewhat smaller eddies. These smaller eddies
undergo a similar break-up process, and transfer their energy to
yet smaller eddies. This energy cascade continues down to the
Kolmogorov scale 1 (Kolmogorov, 1941), where molecular diffusion
is effective in dissipating the kinetic energy and stabilizing the
flow motions. As illustrated in Fig. 1, the energy cascade can be
separated in three distinct parts: (i) the energy-containing range
where energy is introduced (production rate P), (ii) the inertial
subrange in which energy is transferred to smaller eddies [transfer
T(¢)], and (iii) the dissipation range where viscous effects become
dominant (dissipation rate ¢€). The inertial subrange is delimited
by the length scales £~ 1/6¢g and ¢p; ~ 607. The eddy size ¢g
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Fig. 1. Diagram of the energy cascade in terms of eddy sizes ¢ (logarithmic scale) at very high Reynolds number showing the main turbulent scales and ranges. Illustration

adapted from Pope (2000).
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Fig. 2. Classification of break-up morphologies and secondary droplet formation as function of the Weber number for gas-liquid systems (Oh < 0.1). Graphics based on

Pilch and Erdmann (1987).

demarcates the separation between the anisotropic large eddies
(¢ > ¢g;) and the isotropic small eddies (¢ < ¢g;), whereas ¢p; splits
the universal equilibrium range between the inertial subrange
(€g; > € > ¢pp) and the dissipation range (¢ < £p;). In connection to
LES approaches, in which the filter and grid sizes A are expected
to be sufficiently fine to resolve (approximately) 80% of the kinetic
energy in the bulk of the phases (Pope, 2000), the length scale
¢g; provides the theoretical maximum LES resolution by satisfying
A < [El'

In the case of multiphase flows with small Ohnesorge numbers
(Oh < 0.1), such as gas-liquid systems, the importance of viscous
forces is relatively small and the Weber number becomes the prin-
cipal parameter describing break-up behavior. For initially spheri-
cal drops, various break-up morphologies have been observed as
a function of We = p.U2D/o, including vibrational, bag, bag-and-
stamen, multimode, sheet-thinning and catastrophic modes, where
pc is the density of the carrier phase, D is the diameter of the
dispersed phase, and U is the relative velocity between phases.
Following the work by Pilch and Erdmann (1987), the break-up
morphology classification of drops based on We, or liquid columns
viewed from the top, and secondary droplet formation is depicted
in Fig. 2. The no break-up condition is defined by cases where the
drop stays intact, while the drop breaks into few large droplets
in vibrational mode. Bag break-up is generally characterized by
the occurrence of a single bag-like shape. If more than one bag
is formed, the morphology is considered multimode. Finally, sheet
stripping and catastrophic break-up occur when the edges of the
drop are accelerated and separated from the main body faster than
the volumetric core. As shown in the figure, the break-up morphol-
ogy determines the distribution of the secondary droplets gener-
ated from vortical and straining fragmentation mechanisms. The
droplet size at which the break-up process ends, due to the balance
between fragmentation and surface tension forces, corresponds to

the Hinze scale Kolmogorov (1949); Hinze (1955) defined as

3/5
Ru~ () e ®
(o

The set of dimensionless numbers Re, We and characteristic
scales ¢g;, 7, Ry are utilized to construct the regime diagram pre-
sented in Fig. 3 for turbulent flows laden with a finite-size dis-
persed phase. The strategy chosen in this work to perform sim-
ulations of two-phase turbulence is based on the LEIS approach.
The particular methodology developed captures interfaces (topol-
ogy deformations and break-up processes) on the computational
mesh by selecting the grid resolution to be in the order of the
Hinze scale, while filters the small-scale turbulent fluctuations in
the bulk of the phases. In addition, as described in Section 4 and
assessed in Section 5, viscous near-interface flow motions are mod-
eled instead of resolved to maintain the cost-efficiency of the LEIS
approach. In contrast to LES strategies in which the flow and inter-
faces are filtered (Labourasse et al., 2007; Toutant et al., 2009; Her-
rmann, 2013), resulting in (potentially) large computational sav-
ings at expenses of significantly complex mathematical formula-
tions and closure models, the approach presented in this work, al-
though (presumably) more expensive by construction, is designed
to be efficient in a large portion of the Re — We diagram (yel-
low/green color region) by balancing computational cost, modeling
complexity and accuracy.

For illustration purposes', Fig. 3 is constructed by consider-
ing homogeneous isotropic turbulence (HIT) laden with finite-size

1 The Taylor microscale is mathematically defined between the Kolmogorov and
integral length scales, and has been consequently selected as a representative exam-
ple within the range of applicability envisioned for the modeling approach. Other
length scales in the inertial subrange could be considered for generating the regime
diagram, resulting only in small variations of the location of the separation lines.
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Fig. 3. Re — We DNS/LES regime diagram of carrier phase turbulence for HIT laden with finite-size droplets/bubbles. Size of dispersed phase is assumed to be in the order of
the Taylor microscale for illustration purposes. The schematics (right column) represent the comparison of hydrodynamic, dispersed and computational scales for the three

different regions identified.

droplets/bubbles with characteristic diameters in the order of the
Taylor microscale A, and with relative velocities determined by the
root-mean-square (rms) turbulent fluctuations Uypns. Under such
assumptions, and knowing that for HIT the ratio between Kol-
mogorov and largest-size scales is 1/¢y ~ Re=3/4 and the dissipa-
tion rate is given by & = 15vUZ,/A% (Pope, 2000), the following
relations between dimensionless numbers and characteristic scales
are obtained

Ryy/n ~ Re’*We=/> and Ry/tg ~ Re™*""We />, (4)

These expressions are utilized to demarcate three different re-
gions in the Re — We diagram. The first region (I) is named “LES
of Carrier Phase Turbulence with Quasi-Non-Deformable Dispersed
Phase” and corresponds to Ry > ¢, where We is small and the
resulting interfacial structures could be captured with relatively
coarse grids. However, the condition A < ¢ imposes finer resolu-
tions. This is a region where immersed boundary methods (IBM)
are typically used for DNS studies (Mittal and laccarino, 2005;
Lucci et al., 2010). In the second region (II), termed “DNS of Car-
rier Phase Turbulence with Deformable Dispersed Phase” and given
by Ry < ¢g & Ry < 1, We is considerably larger than Re, and
as a result the dynamics of the dispersed phase is dominated
by break-up processes. Consequently, interface-resolving simula-
tions are exceedingly expensive, and instead methodologies based
on sub-filter and/or sub-Hinze-scale modeling should be consid-
ered. Finally, the third region (Ill) is defined by n < Ry < ¢g
and referred to as “LES of Carrier Phase Turbulence with De-
formable Dispersed Phase”. This portion of the diagram is where
our present strategy is envisioned to be efficient since the mesh
required to capture interfaces (down to the Hinze scale) cor-
responds to a LES resolution in the bulk of the phases, i.e,
A~RH. Therefore, the combination of a coarser grid resolu-
tion and the modeling of the viscous near-interface flow motions
could result in significant computational savings within the LEIS
approach.

3. Large-eddy simulation equations

At isothermal conditions without phase change, the nondimen-
sional equations of fluid motion describing immiscible two-phase
incompressible flow are the continuity and Navier-Stokes equa-
tions given as Tryggvason et al. (2011)

V.ou=o0 (5)
du 1 1 1
§+V-(uu)=;[—Vp—kR—eV.(zuS)—kWefg], (6)

where u and p are the velocity and pressure of the flow, o and
u are the piecewise step functions of density and viscosity for
the one-fluid system, S = [Vu + (Vu)T]/2 is the strain-rate tensor,
and f; = Knyd(Xx —Xy,) is the force per unit volume due to sur-
face tension with £ = —V - ny and ny the interface curvature and
normal vector, respectively, and § (x — Xx;) the Dirac delta function
concentrated at the interface location Xy, which evolves according
to the velocity field as

de
dt
The derivation of this set of one-fluid conservation equations as-
sumes that the interface is sharp with respect to the hydrodynamic

flow scales, and consequently the following nondimensional inter-
facial jump conditions are satisfied implicitly

=u(Xz,t). (7)

[pls=p2=p1 and [uly = pz - 1, (®)

1 1
[u]ly =0 and [—p+ ﬁﬂg ‘Z;LS-nE]E = —mlc, (9)
with subscripts 1, 2 and ¥ denoting phase/fluid 1 and 2 and the
interface between them, respectively.
The LES equations are derived by applying a low-pass filter G
to the equations of fluid motion. The filter decomposes any flow
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Fig. 4. Schematics and notation of a fully-developed interfacial boundary-layer.

variable ¢ (X, t) into large- ¢ and small-scale ¢’ contributions, i.e.,
¢ = ¢ + ¢'. The filtered part is defined as

Px ) = /QG(x, X, MYp(X, t) dx, (10)

with x and X’ position vectors in the domain €2, and A the char-
acteristic width of the filter. However, as introduced in Section 2,
the methodology chosen in this work to perform scale-resolving
studies of two-phase turbulence is based on a particular version
of the LEIS approach such that the small flow scales in the bulk
of the phases are filtered, while interfaces are captured. Therefore,
the approach proposed is envisioned to be efficient in Region III
of Fig. 3, and with filter sizes between the Kolmogorov and Hinze
scales. Under this assumption, the filtered interface evolution equa-
tion takes the form

s w0, an
and, since the interface topology is captured and the right-hand
sides involve no velocity terms, the filtered interfacial jump condi-
tions become

[plg =p2—p1 and [u]g = p2 — @1, (12)

— 1
[u]ly =0 and [fp+ R—enz ~2,uS~nE]Z = fWeaIC. (13)

Finally, assuming that differentiation and filtering com-
mute (Vasilyev et al, 1998; Marsden et al., 2002), the filtered
continuity and Navier-Stokes equations result in

V.u=0, (14)
u _ 1 _ 1 — 1
SV @ = E[NIH 2V (218) + Wefg] _V.1,

(15)

where, following Leonard’s decomposition (Leonard, 1974), T =
uu —uu is the SFS, or turbulent, stress tensor. The resolved scales
of LES ¢ are characterized by the filter applied to the conserva-
tion equations. In a general context, the filtering and discretization
operators are different (Lund, 2003). However, in most cases the
spatial discretization is chosen to be specifically the low-pass fil-
ter (Rogallo and Moin, 1984), and therefore t is habitually referred
to as the subgrid-scale (SGS) tensor. Based on the particularization
of the work by Sagaut and Germano (2005) to incompressible two-
phase flows with no phase change, T is not altered due to the
interfacial discontinuity since [u]y, =0, only (potentially) by the
modulation of turbulence resulting from the interaction between
the dispersed and carrier phases as discussed in Sections 4 and 5.

4. Near-interface flow modeling

The Kolmogorov scale, as described in Section 2, characterizes
the smallest flow motions in single-phase unbounded turbulence.
In the case of two-phase systems, however, the discrete phase in-
troduces (potentially smaller) additional scales through two main
mechanisms: (i) deformation and break-up processes, and (ii) ve-
locity gradients and wakes in the vicinity of interfaces. For exam-
ple, the formation of ligaments and films (Martinez-Bazan et al.,
1999) with sizes determined by the Hinze scale, and boundary-
layer-like flow structures (Dodd and Jofre, 2019) with thicknesses
dependent on the material and flow properties of the different
phases/fluids.

In this section, since the LEIS approach proposed is designed
to capture the evolution of interfaces down to the Hinze scale,
the near-interface flow modeling is focused on the coarse-grained
representation of the small-scale, sheared flow motions generated
at the interfacial regions to largely improve the cost-effectiveness
of the calculations. In particular, the recent work by Dodd and
Jofre (2019) quantified that the DNS of HIT laden with finite-size
droplets requires an order of magnitude larger number of grid
points than its single-phase counterpart. Therefore, similar to LES
of wall-bounded flows in which models (or special boundary con-
ditions) are required to reduce the stringent resolution require-
ments in the viscous near-wall region, the paragraphs below will
explore the extension of wall modeling approaches (Piomelli and
Balaras, 2002; Kawai and Larsson, 2012) to two-phase turbulent
flows.

The first step is to connect boundary-layer the-
ory (Schlichting and Gersten, 2016) with the flow structure near
interfaces. Following Csanady’s slip wall approach (Csanady, 1997),
let us consider the mean velocity distribution in the vicinity of
an approximately flat interface? assuming fully-developed steady-
state conditions, in the absence of inertial fluctuations, and with
uniform shear stress in the interface-normal direction. As sketched
in Fig. 4, let the interfacial boundary layer be conceptually divided
into an inner and outer region such that:

1. In the inner region, the mean velocity profile U(fi) and tur-
bulence statistics are presumed to depend only on the distance
from the interface 1, the kinematic viscosity of the carrier phase
Ve = ¢/ pPe, and the interfacial shear stress

ts = /(6208 m5)? + (& -2 m5)?, (16)

where t; and t, are two orthogonal unit vectors that are tangent
to the interface. Note that in the absence of surface tension gradi-
ents (no Marangoni stresses) the shear stress is continuous across

2 In HIT laden with finite-size droplets, based on DNS studies by Dodd and
Jofre (2019), the ratio between cross-sectional perimeter and mean boundary-layer
thickness is 7Dy /8 ~ 20.
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the interface, i.e., Ty = Ty, = Tyq4. In addition, Ty is utilized to
characterize the friction velocity ur, = /Tx/pc and viscous length
scale 8.y = Ve/Pc/Tx = Vc/Ury, and nondimensionalize the vari-
ables Ut =U/ury, and Ai* =flury /vc on the carrier-phase side of
the interface. Upon dimensional analysis it can be shown that the
relative velocity Uy =U*+ —U{, with Uf =Us/ur, the interface
velocity in viscous units, is of the form

U =U* - U = f(AT). (17)

This inner region is composed of: (i) the viscous sublayer (0 <
it <5) where turbulent fluctuations are suppressed, molecular
viscosity dominates momentum transport, and the relative veloc-
ity increases linearly with distance from the interface, ie., U5 =
Ut —U{ =at; (ii) the log-law region (A* > 30), which overlaps
with the outer region and where momentum transport is dom-
inated by turbulent fluctuations (Reynolds stresses); and (iii) a
buffer layer (5 < it < 30) transitional between (i) and (ii). The in-
ner region extends from the interface to an approximate distance
of i~ 0.158, where § is the thickness of the boundary layer de-
fined by the location in which the flow velocity is 99% of the free
stream velocity U, i.e., U(§) = 0.99U.

2. In the outer region, the mean velocity profile and turbu-
lence statistics depend on the friction velocity u;;, and the bound-
ary layer thickness §, but not on the kinematic viscosity v, (mo-
mentum transport is entirely dominated by Reynolds stresses), and
therefore is function of

ur-ut :g(g). (18)

The outer region extends the region 30/Rer,, < fi/§ <1, with the
friction Reynolds number Re;y = ur;8/v, characterizing the ratio
between the outer § and inner 8, region length scales.

3. In the overlap region, where the inner and outer
regions meet, an asymptotic matching argument based on
Eqs. (17) and (18) (similar to Millikan’s analysis (Millikan, 1939))
implies the existence of a logarithmic relationship between the
mean velocity and distance from the interface expressed as

Ur-us = %ln fit + A* for fi/8,,, — oo (inner region), (19)

Ut —Ut=— L1y g
% K 6
where « ~ 0.41 is the von Karman constant, and A* and Bt are
parameters that depend on the details of the interface and the
flow field, respectively. For example, in the case of solid bound-
aries, A* ~ 5 for smooth surfaces and Bt ~ 2.3 for zero-pressure-
gradient flows. Adding these two equations yields the slip law

for /6 — 0 (outer region), (20)

Ut —Ug = %lnRe,X +A* +B". (21)

Once the classical boundary-layer theory has been adapted to
interfacial flows, the final step is to propose a modeling strategy
for the near-interface region. As introduced in the sections above,
in this work we explore the utilization/extension of approaches
developed for wall-stress modeling. Many different methodologies
have been proposed in the past decades with the aim of repre-
senting various boundary-layer phenomena and with different bal-
ances between accuracy and computational cost; see, for example,
the recent review by Bose and Park (2018) for a detailed exposi-
tion. However, as a first analysis of this problem, we focus on a
simple model in which the interfacial shear stress is algebraically
related to the velocity at some distance 7i* from the interface; in
algebraic closures, it is typically assumed that the law of the wall is
valid locally and instantaneously, and a no-penetration condition is
enforced for the wall-normal velocity. In the absence of pressure-
gradient effects on the boundary layer, the LES velocity profile can

be assumed to satisfy a logarithmic law (Deardoff, 1970) in the
form

. M| 1 (e
u(i*) —uy = ug, Eln e +C*H, (22)
where uy and ulM are the unknown interface and interface-
modeled (denoted by superscript IM) friction velocities, respec-
tively, and C* is a normalized intercept coefficient particular to the
problem. The modeling strategy therefore is to utilize the equa-
tion above to prescribe the velocity profile near the interface. The
problem, however, is that there is one equation (Eq. (22)) and two
unknowns (usx and uIT';/I) rendering the system undetermined. To
remediate this problem, it is assumed that uy, is dominated by the
resolved (large) scales, and consequently it can be approximated
from the LES velocity at the grid point capturing the interface, i.e.,
Uy ~ Us_g; the implicit assumption is that the kinetic energy of
the inner region is much smaller than that of the outer region.
Once uy is obtained, the system is determined and the LES ve-

locity at a matching location A* in the range 30 < it < 0.15Rer is
utilized to iteratively approximate ulr];/[ from Eq. (22).

5. Numerical experiments

This study uses results from DNS of droplet-laden decaying
HIT (Dodd and Ferrante, 2016). These simulations used the volume-
of-fluid (VoF) method to resolve the flow inside and outside the
droplets and modeled the surface tension effects. A full description
of the numerical methods that were used to simulate the turbulent
two-phase flow is provided in references (Baraldi et al., 2014; Dodd
and Ferrante, 2014).

5.1. Initial conditions and droplet properties

As detailed in Dodd and Ferrante (2016), the system is initial-
ized at t =0 with a velocity field generated by prescribing the
turbulent kinetic energy (TKE) spectrum, ensuring that the ini-
tial random velocity field is isotropic and divergence-free, and
that the velocity cross-correlation spectra satisfy the realizabil-
ity conditions (Schumann, 1977). The Reynolds number Re .r=

PrefUreflref/ Href = 642 x 10* based on the density Pref = Pc=1

kg/m? and viscosity jiof = pc =1.33 x 10> m?/s of the carrier
phase, the reference velocity U = 26.7 m/s, and the HIT domain
ref = 3-2 X 10~2 m, is utilized to nondimensionalize the prob-
lem. After one dimensionless time unit, defined as t = Liof/Us, the
droplets are introduced into the system with zero velocity and set
free to interact with the turbulent flow field.

Table 1 shows the dimensionless flow parameters at differ-
ent times t for the droplet-free flow (case A), where Urys is the
root-mean-square (rms) turbulent fluctuations, ¢ is the dissipation
rate, £g ~ L/6 and t,, are comparable to the integral length and
time scales, A is the Taylor length scale, Re; = UrmsA/ve and Re =
(3/20)Re§ are the Reynolds number based on the Taylor and inte-
gral scales, respectively, and n and 7, are the Kolmogorov length
and time scales. The initial turbulent flow field is well resolved, as
indicated by xmaxn = 4.3 at t =0, where kmax = 7N is the max-
imum resolved wavenumber and N = 1024 is the number of grid
points in each direction of the computational grid.

The dataset contains one simulation (case A) of droplet-free
flow and eight simulations (A*-H) of droplet-laden isotropic tur-
bulence corresponding to the cases listed in Table 2. Case A* is a
limiting case in which the viscosity and density ratios are unity
and the Weber number of the droplets is infinity. We analyze
the effects of varying the initial droplet Weber number (We =
pcDoUZs/0), droplet- to carrier-fluid density ratio (¢ = pg/0c)



L. Jofre, M.S. Dodd and ]. Grau et al./International Journal of Multiphase Flow 132 (2020) 103406 7

Table 1

Flow parameters (dimensionless) at initial time (¢t = 0), droplet release time (t = 1), time at which the solution is inde-
pendent of the initial conditions (t = 2.5), and final time (¢t = 6) in case A.

Re Re;, Lo/n Ty T T,

1.35x 1073 844 75 71.7 1.89 045 0.116
1.58 x 1073 1036 83 65.8 227 062 0.160
1.70 x 103 784 72 60.5 260 0.72 0.186
2.04x 1073 437 54 53.0 380 1.04 0.268

t Urms e Lo A n
0.0 0.0509 1.15 x 103 0.0965 0.0229
1.0 0.0457 6.10 x 104 0.1038 0.0283
2.5 0.0397 4.49 x 104 0.1030 0.0286
6.0 0.0285 2.18 x 10~* 0.1082 0.0295
Table 2
Droplet properties (dimensionless) at release time t = 1.0.
Case We ¢ = palpc Y = Hallhe T4 T4/ Teq TalTy
A - - - — — -
A* [ 1 1 - - -
B 0.1 10 10 35.9 15.8 225
C 1.0 10 10 35.9 15.8 225
D 5.0 10 10 359 15.8 225
E 1.0 1 10 3.6 1.6 23
F 1.0 100 10 359.0 158.0 2250
G 1.0 10 1 41.8 18.4 261
H 1.0 10 100 349 15.4 219
Table 3

Viscous scaling parameters (dimensionless) at t = 2.5: 7y is the shear stress at the
interface, u., is the interfacial friction velocity in the carrier phase, d,, is the inter-
facial viscous length scale in the carrier phase, and §,., /8, is the interfacial viscous
length scale in the carrier phase normalized by the mean viscous length scale of the
carrier phase.

Case Ts Uz, Sves Bues /00
A* 4.85x 107> 6.96 x 103 2.24 x 1073 1.020
B 2.45x 10~ 1.57 x 102 9.94 x 104 0.453
C 2.41 x 104 1.55 x 102 1.00 x 103 0.458
D 2.33 x 104 1.53 x 1072 1.02 x 1073 0.465
E 1.77 x 104 1.33 x 102 1.17 x 10-3 0.533
F 3.40 x 10~ 1.84 x 102 8.45 x 10~* 0.385
G 1.40 x 10~* 1.18 x 102 131 x 103 0.599
H 3.40 x 104 1.84 x 102 8.45 x 10~4 0.386

and droplet- to carrier-fluid viscosity ratio (y = wy/pc) in the
three sets BCD, CEF, and CGH, respectively, while keeping the other
two parameters constant. In cases B, C, and D, We increases from
0.1 to 5.0 by decreasing the surface tension coefficient. In cases
C, E, and F, ¢ increases from 1 to 100 by increasing p4. In cases
C, G, and H, y increases from 1 to 100 by increasing 4. For all
cases, the droplet volume fraction is oy = 0.05, the initial number
of droplets is N; = 3130, and the initial nondimensional droplet
diameter is Dy = 0.03125, which is equal to 207m;_; (or equiva-
lently 1.1A;—1), where n;—; and A,_; are the Kolmogorov and Tay-
lor length scales at the time the droplets are released in the flow
(t = 1). This yields a droplet resolution of 32 grid points per diam-
eter.

5.2. Conditional averaging methodology

Motivated by studying the flow structure near the droplet sur-
face, we introduce a conditional averaging procedure to compute
statistical quantities conditioned on distance from the interface.
Starting with the VoF field, we use the marching cubes algo-
rithm (Lewiner et al., 2003) to compute a level set (LS), or signed
distance function, representing the shortest distance to the inter-
face, which has the property ¢ = 0 at the interface, ¢ < 0 in the
droplet fluid, and ¢ > O in the carrier fluid. Fig. 6 shows the VoF
and LS fields in an x-y plane at t = 2.5. Note that the computa-
tional cost of the algorithm to compute ¢ scales as (|¢|maxN)>,
where |@|max iS the maximum search distance for computing ¢
and N is the number of grid points in each spatial direction. There-

fore, to limit the computational cost, while still capturing most of
the inner region of the interfacial boundary layers, we set |¢|max
to approximately two to three droplet diameters depending on the
relative position of the neighboring droplets. This limitation ex-
plains the white regions in Fig. 6(b).

5.3. Viscous scales

We have defined in Section 4 the viscous scales that charac-
terize the magnitude of the velocities and length sizes near the
droplet surface. These scales serve as (i) a measure of the small-
est hydrodynamic scales at the droplet surface, and (ii) a reference
value for expressing the quantities in viscous units. A fundamen-
tal question we aim to address is how does 6, compare to the
smallest length scale of the surrounding turbulent flow, i.e., the
Kolmogorov scale of the carrier phase 7.. To make the comparison
direct, we compute the viscous length scale of the carrier phase
Sve = Vea/Pc/Tc, Where the mean shear stress for canonical de-
caying isotropic turbulence is 7. = ¢/ (4€¢)/(15v¢) (Pope, 2000).
Note that, in this context, §,, is simply an alternative definition
of the Kolmogorov scale. The relationship between §, and 7 is
8y = (15/4)1/4n ~ 1.391.

Table 3 shows that SUcz /8y in case A* is close to unity as would
be expected for canonical decaying HIT, which indicates that the
effect of initial conditions is undetectable at t = 2.5. If we com-
pare 8y, /8y, for case A* to the droplet-laden cases B-H, 8,5 /8y,
for the droplet-laden cases is consistently one-third to one-half as
large. Fig. 7 shows the time evolution of d,., normalized by §,,.
For all cases and all times, 8y, /8y, is less than unity, therefore
the smallest length scale is always located at the droplet surface
due to the induced velocity gradient. Looking at the time evolu-
tion of 8y, /6y, we recall that the droplets are released from rest
at t = 1, leading to an instantaneous increase in tyx, which explains
the minimum in &, /8. However, after roughly one integral time
scale (t > 1+ 1, ~2.8), 8.5/, reaches a quasi-stationary value,
suggesting that the effect of the initial conditions is forgotten.

The effects of varying We, ¢, and y on 4,y are as follows.
Fig. 7(a) shows that as We increases &, /8y, increases. The de-
crease in 8y, /8y, for case B at later times is explained by droplet
coalescence. Droplet coalescence produces velocity fluctuations at
the droplet scale through the power of the surface tension, and
because the interfacial surface energy scales as We~!, the effect is
most pronounced for the lowest Weber number case B (We = 0.1).
As the density ratio increases, depicted in Fig. 7(b), vy /6y, de-
creases, showing that higher inertia droplets have larger velocity
gradients and smaller length scales near their surfaces than lighter
droplets. Fig. 7(c) shows that increasing the viscosity ratio y leads
to a decrease in dy., /0y.. This suggests that in the solid particle
limit (y — o0), 8y, /6y, would be minimum, implying that, from a
computational perspective, solid particles are the most costly dis-
persed medium to simulate in terms of resolving the velocity gra-
dient near the particle surface.

After one integral time scale, 8, /8, ranges between 0.35 and
0.5 depending on the case, indicating that J,., is two to three
times smaller than the smallest length scale in the surround-
ing turbulent flow. Consequently, to perform fully-resolved DNS of
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Table 4
Hinze scale (dimensionless) and its ratio with the characteristic turbulent and LES
length scales at t = 2.5 with p. = 1 and € = 4.49 x 1074,

Case Ry Ruln Ru/t Ru/to
A* 0 0 0 0

B 2.26 x 1071 132.94 13.14 2.19

C 5.68 x 102 33.41 3.30 0.55

D 2.16 x 102 12.71 1.26 0.21

E 5.68 x 102 3341 3.30 0.55

F 5.68 x 102 33.41 3.30 0.55

G 5.68 x 102 33.41 3.30 0.55

H 5.68 x 1072 33.41 3.30 0.55

droplet-laden flows (ignoring breakup and coalescence for the time
being), there is an additional microscale that must be resolved that
is significantly smaller than the Kolmogorov scale. For the cases
considered here, the number of grid points required on a fixed
mesh is roughly ten to thirty (23-33) times larger than single-
phase isotropic turbulence at the same Reynolds number. This fact,
in part, explains why a numerical resolution of xmaxn = 4.3 was
used to produce this DNS dataset.

5.4. Hinze scales

The effect of the initial problem setup is forgotten at dimen-
sionless time t ~ 2.5, as discussed in Section 5.3, when quasi-
stationary conditions are achieved in terms of viscous scales. The
analyses presented from this point forward, thus, will focus on the
instantaneous dataset at t = 2.5.

The dataset considered in this work (cases B-H) is found in
region III of the Re — We DNS/LES regime diagram introduced in
Section 2 (at t =2.5, Re =784 and We ranges between 0.1 and
5), and is therefore suitable for exploring and assessing the per-
formance of the near-interface flow modeling approach presented.
The nondimensional value of the characteristic turbulent and LES
length scales at t =2.5 for cases A*-H correspond to 1 =1.70 x
1073, ¢g;=1.72 x 1072, and ¢ = 1.03 x 1071, and the Hinze scale
and associated ratios are listed in Table 4. The ratio between Hinze
and anisotropic turbulent scales is Ryy/¢gy ~ O(1 - 10), indicating
that LES meshes with resolutions in the order of ¢g would be suf-
ficient to capture the evolution of the interfaces down to the Hinze
scale. In addition, from a spatial resolution perspective, the result-
ing LES mesh combined with the modeling of the small scales in
the interfacial boundary-layer regions would potentially reduce the
computational cost of studying two-phase turbulence phenomena
by three orders of magnitude since the ratio between Kolmogorov
and anisotropic turbulent scales is ¢gj/n ~ O(10).

5.5. Assessment of the interfacial boundary-layer flow structure

The first step toward validating an interfacial flow modeling ap-
proach for LES is to characterize the flow structure in the vicin-
ity of interfaces. For this objective, the DNS dataset extracted from
cases B-H at dimensionless time t = 2.5 is analyzed by considering
the spatially-averaged velocity field in the near-interface regions.
The procedure to obtain spatially-averaged velocities is composed
of three steps: (i) for each grid point, calculate the level-set dis-
tance with respect to the closest interface as depicted in Fig. 6(b),
(ii) spatially average the velocity field conditioned on the distance
to the interface, as illustrated in Fig. 5, by making use of the level-
set distance previously computed, and (iii) decompose the result-
ing spatially-averaged velocity vectors into normal and tangential
parts with respect to the interface to extract the tangential compo-
nent U+, In particular, focus is placed on the characteristics of the
interfacial boundary layers generated by the interaction between

¢+
¢t =10 { j
J
ot=5 | k
o2 |7
INTERFACE

Fig. 5. Schematic (sizes not proportionally scaled) illustrating the layers near the
droplet interface used for conditional averaging.

Table 5

Parameters inferred from the DNS dataset for the assessment of the in-
terfacial boundary-layer flow structure at t = 2.5: (i) it @ t,f /7" ~ 1 is
the distance from the interface (viscous units) at which 7;f and 7;* are
approximately equal, (ii) ¥ and (iii) C* are the inverse of the slope and
intersection constant, respectively, of the approximated log-law region
curves (logarithmic scale). Abbreviation AVG indicates the average value

of cases B-H.
Case it @t/ ~ 1 K c+
B 10 0.41 5.8
C 9 0.40 5.1
D 8 0.41 4.6
E 12 0.42 4.4
F 11 0.41 4.7
G 8 0.42 5.9
H 9 0.38 4.8
AVG 10 0.41 5.1

the turbulent flow and droplets in terms of normalized relative ve-
locity and fractional stresses as depicted in Figs. 8 and 9, respec-
tively, and quantified in Table 5.

The relative velocity U =U* —U{ profiles (viscous units),
spatially-averaged conditioned on the distance to the interface
along interface-normal directions 7™, are shown in Fig. 8 for cases
B-H at t = 2.5 and compared to the theoretical (i) linear relation
Ut =f* and (ii) logarithmic curve U} = (1/k)Infit +C*, with
k =0.41 and C* = 5.1 corresponding to the average values approx-
imated in Table 5. Based on these results, three main observations
can be extracted: (i) similar to turbulent boundary layers in wall-
bounded flows, the linear relation U;” = fi* is satisfied for cases B-
H in the range i+ < O(1); (ii) in all cases, a log-law region of the
form U;" = (1/«) Infit 4 C* satisfactorily approximates the relative
velocity profiles for it > ©(10); and (iii) as tabulated in Table 5,
the variability of the inferred von Karman constants « and inter-
cept coefficients C* is small between cases, taking the average val-
ues of x = 0.41 and C* = 5.1 in particular.

Profiles of the near-interface fractional contributions of
the viscous 7, = (vc/u%E)(du/dﬁ) and Reynolds stresses
Tt = (—1/u%2)(u’v’), i.e.,, turbulent velocity fluctuations, to
the total stress 7t = 7,5 + 7" for case C (as representative of the
dataset B-H) are shown in Fig. 9. The profiles depicted in the figure
demarcate two clearly separated regions with a rapid transition
between them. The total stresses in the first region (i g 10) are
dominated by molecular viscosity effects since 7,/ > 7%, while
the second region (fi* 2 10) is characterized by large Reynolds
stresses, related to the appearance of significant turbulent velocity
fluctuations, and resulting in 7,7 « 7;7. The transition point be-
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Fig. 7. Time evolution (dimensionless) of the interfacial viscous length scale in the carrier phase §,,, (t) normalized by the mean viscous length scale of the carrier phase

8, (t) for varying (a) Weber number, (b) density ratio, and (c) viscosity ratio.

tween these two regions, defined as the location A* at which 7}
and ;" are approximately equal, is found in the range fi* ~8-12

for cases B-H as listed in Table 5.

The analysis conducted in this section based on DNS data from
cases B-H indicates therefore that, similar to the inner region of
turbulent boundary layers in wall-bounded flows, the flow struc-
ture near interfaces can be separated in three distinct layers: (i) a
viscous sublayer, i < O(1), where molecular viscosity dominates

over turbulent fluctuations, and characterized by a linear increase
of the relative velocity with Ai* given as U;" = i*; (ii) a buffer layer,
0(1) <t < 0(10), in which the momentum transport by means
of molecular viscosity and turbulent fluctuations is of the same or-
der, ie., 7,f/7;" ~ 1; and (iii) a log-law region, Ai* > O(10), where
turbulent fluctuations are the main mechanism for momentum
transport, and where the relative velocity can be efficiently approx-
imated by a logarithmic curve of the form Ut = (1/k) InAit 4+ C*.
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Reynolds stresses ;" to the total stress t. Results obtained from spatially-averaged
data at dimensionless time t = 2.5 for case C as representative of the dataset.

5.6. A priori analysis of the near-interface flow modeling approach

After analyzing the mean-velocity profile in the vicinity of in-
terfaces by utilizing DNS data extracted from cases B-H at dimen-
sionless time t = 2.5, the performance of the near-interface flow
modeling approach proposed in Section 4 is a priori analyzed. For
each case, the methodology followed is composed of two steps:

(1) explicitly filter the DNS velocity field, and (2) iteratively recon-
struct the interface-modeled friction velocity ulrlgl by means of the
algebraic closure model introduced in Eq. (22).

The details of the filtering and reconstruction steps are as fol-
lows. The filtering operation is carried out by means of a second-
order Gaussian filter defined as Sagaut and Grohens (1999)

2 52
P(X) = P(X) + 4799 +O(AY),

24 8x]2. (23)

where ¢ and ¢ correspond to the velocity components of the un-
filtered DNS (u, v, w) and filtered LES (u, v, w) fields at dimension-
less time t = 2.5, and the dimensionless filter width is chosen to
be A =1/64 ~ Cgys as a reference, the dimensionless grid resolu-
tion of the DNS dataset is A = 1/1024. Next, the interface veloc-
ity uy, is approximated by the spatially-averaged LES velocities at
the grid points capturing the interfaces, i.e., uy ~ U;_q. Finally, the
interface-modeled friction velocities u{M are iteratively approxi-
mated from the algebraic model defined in Eq. (22), with x =
0.41 and C* = 5.1 (average values of Table 5), at the matching lo-
cations ﬁ*ulfl)\:/[/vc =fit =~ 30, r‘l*ultl;/l/vc =it ~ 60, and ﬁ*ulrlgl/vc =
it ~ 90. The values between parenthesis correspond to the nor-
malized relative errors with respect to u, (listed in Table 3) and
calculated as o] = 100 x |uIT]¥[ — Ugg |/Urg.

The results in terms of spatially-averaged interface velocities usy,
and interface-modeled friction velocities uI,])\:/I at different matching
locations fi* are summarized in Table 6. Three main observations
can be extracted for the set of cases B-H studied: (i) the approx-
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Table 6

Results of the a priori near-interface flow modeling analysis at t = 2.5 for cases B-H. The interface velocity is approximated by the spatially-averaged LES velocities
at the grid points capturing the interfaces, i.e., uyx ~ u;_q. The interface-modeled friction velocities ul,lyl are iteratively approximated from the algebraic model defined

in Eq. (22), with ¥k =0.41 and C* = 5.1, at the matching locations ﬁ*ulrlg/l/uc =it~
between parenthesis correspond to the normalized relative errors with respect to u,, (listed in Table 3) and calculated as ¢

30 (left), ﬁ*ulrlg/l/uc =t ~ 60 (center), and ﬁ*uy;/l/uc = fit ~ 90 (right). The values

re] = 100 x \ul,l;/[ — Ugy | /Ury .

Case us uM @ 7+ ~ 30 uM @ i+ ~ 60 uM @ i+ ~ 90

B 2.27 x 102 1.64 x 102 (4.2%) 1.63 x 102 (4.0%) 1.63 x 102 (3.8%)
c 233x 1072 1.57 x 102 (1.4%) 1.57 x 1072 (1.4%) 1.57 x 102 (1.5%)
D 2.68 x 102 1.48 x 102 (3.0%) 1.49 x 1072 (2.9%) 1.49 x 102 (2.7%)
E 491 x 102 1.26 x 102 (5.5%) 1.26 x 102 (5.4%) 1.26 x 102 (5.2%)
F 1.12 x 10-2 1.80 x 102 (2.4%) 1.80 x 102 (2.3%) 1.80 x 102 (2.2%)
G 3.04 x 102 1.22 x 1072 (3.5%) 1.22 x 1072 (3.2%) 1.21 x 1072 (2.9%)
H 1.91 x 10-2 1.89 x 102 (2.5%) 1.89 x 102 (2.8%) 1.90 x 102 (3.0%)

imation of uy as the average value of u;_y over the grid points
capturing the interfaces is an effective strategy as it provides good
sensitivity to the variations particular to each simulation; (ii) for
each case, the uI,];/I values do not vary significantly as a function of
matching location 7* within the log-law region; and (iii) in general,
the relative reconstruction errors &, are (approximately) below
5%. Therefore, these results indicate that, based on a priori studies,
the near-interface flow modeling approach proposed in this work
has the potential to efficiently reduce the cost of performing LES
of two-phase turbulence.

6. Summary, conclusions and future work

The computational cost of studying turbulence in two-phase
systems can be notably reduced by means of LES approaches, in
which the large eddies are resolved while their interaction with
the small-scale flow motions are modeled. Away from phase in-
terfaces, LES has proven to be (over the past decades) an attrac-
tive strategy able to reduce the simulation expense, in terms of
grid points per spatial dimension N, to a linear relation with the
Reynolds number given as N3 ~ Re; as a reference, the cost of per-
forming DNS scales as N3 ~ Re94. However, analogously to the case
of solid walls in single-phase turbulence, the performance of the
methodology is significantly reduced due to the necessity to prop-
erly resolve with fine meshes the boundary layers generated at in-
terfaces.

The near-interface flow modeling approach presented in this
work, therefore, aims at keeping the cost of LES linear with re-
spect to the Reynolds number when phase/fluid interfaces inter-
act with turbulent flows. The approach is based on (i) low-pass
filtering the equations of fluid motion to resolve the large scales,
(ii) utilize an LES model to close the resulting filtered equations,
(iii) capture with a relatively coarse grid the evolution of inter-
faces down to the Hinze scale, and (iv) use models similar to the
ones utilized in wall-modeling of single-phase turbulence to accu-
rately model the near-interface motions, and therefore enlarge the
mesh resolution near interfaces. The first part of the methodology
is to connect boundary-layer theory with the flow structure near
interfaces by following Millikan’s theoretical analysis applied to the
case of interfaces (conceptualized as slip walls). The second part
consists in proposing models, inspired from wall-modeling ideas in
the present work, to represent the boundary-layer flow structure in
the vicinity of interfaces.

As a first exploratory work, a straightforward model in which
the interfacial-shear stress is algebraically related to the velocity
as a function of distance to the interface, viz. logarithmic law ap-
plied to interfacial flow, has been chosen and a priori analyzed. The
results obtained, based on DNS data extracted from HIT laden with
finite-size droplets for different Weber numbers and ratios of car-
rier and dispersed phase densities and viscosities, indicate that the
approach proposed has the potential to efficiently reduce, up to

several orders of magnitude depending on the ratio between Kol-
mogorov, Hinze and anisotropic turbulent length scales (approxi-
mately one thousand times in this work), the cost of performing
LES of two-phase turbulence by modeling (instead of resolving) the
viscous near-interface flow motions.

Ongoing work is focused on further assessing the performance
of the modeling strategy by means of a priori analyses of differ-
ent canonical two-phase turbulent flows and closure models in the
context of HF simulations. In the mid- long-term, work will con-
sider a posteriori assessments of the near-interface flow modeling
in LES studies of interfacial problems, such as turbulent two-phase
jets, waves and bubbly flow.
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