
Center for Turbulence Research
Annual Research Briefs 2018

Formation and dynamics of bubbles
in breaking waves:

Part II. The evolution of the bubble size
distribution and breakup/coalescence statistics

By W. H. R. Chan, M. S. Dodd, P. L. Johnson,
J. Urzay AND P. Moin

1. Motivation and objectives

Breaking waves in oceans generate bubbles over a wide range of scales—an observation
that has been replicated experimentally (Blenkinsopp & Chaplin 2010; Deane & Stokes
2002) and numerically (Wang et al. 2016; Deike et al. 2016; Chan et al. 2018a). The
effects of these bubbles on the atmosphere and oceanic environment have motivated
efforts to better understand the physical mechanisms behind the formation of this wide
range of bubble sizes, which necessarily involve breakup and possibly coalescence events.
This brief is the second part of a two-brief series documenting the current status of
this investigation: in the first brief (Chan et al. 2018b), algorithms to identify bubbles
and to detect bubble breakup and coalescence events in a two-phase simulation with
knowledge of the volume fraction field are detailed. In this brief, these algorithms are used
to characterize the evolution of the bubble size distribution in an ensemble of simulations
of breaking waves, including the identification of breakup and coalescence events. Then,
on the basis of trends observed in the evolution of the distribution and accompanying
events, a pathway for the identification of potential mechanisms for bubble breakup and
coalescence is outlined.

The contents of this brief are structured as follows: in Section 2, the ensemble of
simulations of breaking waves introduced by Chan et al. (2018b) is described in greater
detail, together with a discussion of the key scales involved in the analysis of breaking
waves. In Section 3, the time evolution of the bubble size distribution computed from
the aforementioned breaking wave simulations is discussed. In Section 4, the population
balance equation is introduced in order to provide a framework for interpreting the
evolution of the size distribution. In Section 5, some of the breakup and coalescence terms
in the population balance equation are computed from the aforementioned simulations.
Closing remarks on the identification of a potential set of bubble breakup and coalescence
mechanisms on the basis of these computed statistics are offered in Section 6.

2. Breaking wave parameters and scales

In this work, an unstructured node-centered geometric unsplit volume-of-fluid-based
incompressible two-phase flow solver with consistent mass and momentum advection de-
veloped by CTR and Cascade Technologies (Kim et al. 2014) was used to perform an
ensemble of 30 simulations of breaking third-order Stokes water waves in air. A descrip-
tion of this ensemble was provided by Chan et al. (2018a,b), but will be reproduced
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here with additional explanations for ease of reference. Parts of the subsequent discus-
sion are also adapted from the publication by Chan et al. (2018a). Using the wavelength
L as the characteristic length scale, and the corresponding deep water wave velocity
uL =

√
gL/2π as the characteristic velocity scale corresponding to this length scale, the

Weber and Reynolds numbers of the wave may be defined as We = WeL = ρlu
2
LL/σ and

Re = ReL = ρluLL/µl, respectively. Here, ρl, µl, and σ respectively denote the density
and viscosity of water, and the surface tension of the water-air interface. The Weber
number characterizes the importance of inertial effects relative to capillary effects, while
the Reynolds number characterizes the importance of inertial effects relative to viscous
effects. The aforementioned simulations were performed for a wave with We = 1.6× 103

and Re = 1.8× 105. These parameters correspond to a 27-cm-long water wave at atmo-
spheric conditions. The computational mesh consisted of about 4.2 million mesh nodes,
the minimum grid spacing was L/216—equivalent to 1.25 mm at atmospheric condi-
tions—and the length of the computational domain along each Cartesian axis was L.
The mesh is nonuniform and is coarser closer to the edges of the domain in the wave-
normal direction, such that a large majority of the generated bubbles are resolved with
the minimum grid spacing. The initial wave steepness, which is the product of the wave
amplitude and the fundamental wavenumber 2π/L, was 0.55, and the corresponding ini-
tial velocity field was documented by Iafrati (2009). Periodic boundary conditions were
employed in the directions parallel to the interface, and slip boundary conditions were
employed in the wave-normal direction. For an illustration of what the wave looks like at
the beginning and some time after it has broken, refer to Figure 7 of Chan et al. (2017)
or Figure 13 of Chan et al. (2018a). Note that the characteristic velocity scale, and thus
the dimensionless parameters We and Re, is defined differently by Chan et al. (2017).

To determine the relative importance of inertial, viscous, and capillary effects at a
particular bubble size, it is instructive to consider the scales at which two of these effects
are approximately equally important, nondimensionalized by the wave (integral) scales
L and uL. Consider, first, the balance of inertial and capillary effects. Hinze (1955)
considered the case of sufficiently low concentration of the dispersed (gas) phase such that
coalescence events are rare, and sufficiently large Reynolds numbers such that the smallest
turbulent eddies in the continuous (liquid) phase are much smaller than the largest
entities of the dispersed phase, so viscous effects are not dominant for these large entities.
Hinze postulated that in this limit, the dominance of inertial forces due to turbulent
fluctuations over capillary forces results in the fragmentation of large cavities and bubbles
of the dispersed phase. A similar argument was brought forward by Kolmogorov (1949).
For this to occur, the characteristic hydrodynamic pressure fluctuations ρu2Ln

associated
with velocity fluctuations of magnitude uLn at a characteristic length scale Ln will need
to exceed the capillary pressure σ/DLn

associated with a bubble of size DLn
. If one

assumes that a bubble is most likely acted upon by a turbulent eddy of the same size, then
DLn

= Ln. A physical justification for this assumption was offered by Hinze (1955) and
refined by Chan et al. (2018a). Then, one may express the postulate above as WeLn

> 1,
where WeLn denotes the following Weber number

WeLn
=
ρlu

2
Ln
Ln

σ
. (2.1)

This postulated fragmentation cascade begins approximately at the integral scale (Ln =
L) and is terminated at what has now been termed the Hinze scale (Ln = LH), where the
two forces above are balanced and WeLH

∼ 1. Suppose, in addition, that the turbulent
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flow field in the mixed-phase region is approximately locally isotropic. Then, one could
adopt the Kolmogorov scalings (Kolmogorov 1941, 1962) typically associated with the
inertial subrange of isotropic turbulence. In particular,

u2Ln
∼ (εLn)2/3, (2.2)

where ε is the average rate of dissipation and L � Ln ≥ LH. Then, one may rearrange
Eqs. (2.1) and (2.2) to obtain, for WeLH

∼ 1,

LH ∼
(
σ

ρl

)3/5

ε−2/5. (2.3)

One could further assume that the characteristic dissipation rate is determined by the
energy-containing scales, so in the case of a breaking wave, ε ∼ u3L/L = g3/2L1/2/(2π)3/2.
Note that the length scale that enters the dissipation rate scale should technically be a
function of the wave height from energy considerations, but for wave slopes of order
0.1 to 1, this distinction does not significantly impact this derivation. Substituting this
expression for the dissipation rate into Eq. (2.2), and nondimensionalizing LH with L,
yields the nondimensional Hinze scale [see, also, Shinnar (1961), Wu & Faeth (1993),
Faeth et al. (1995), Tsouris & Tavlarides (1994), and Luo & Svendsen (1996)]

LH

L
∼
(

2πσ

ρlgL2

)3/5

= We
−3/5
L . (2.4)

This is analogous to the well-known expression for the nondimensional Kolmogorov length

scale LK/L ∼ Re
−3/4
L , at which inertial and viscous effects are approximately balanced

and ReLn
= ReLK

∼ 1, where ReLn
refers to the Reynolds number associated with uLn

and Ln

ReLn =
ρluLn

Ln
µl

. (2.5)

Recall Hinze’s assumption that viscous effects are not dominant throughout the fragmen-

tation cascade. This demands that the ratio LH/LK ∼ We
−3/5
L Re

3/4
L be large. For the

breaking wave simulation considered here, LH/LK ≈ 100, so the assumption is justified.
Alternatively, one may write this ratio as

LH

LK
∼
(

σ

µluLK

)3/5

. (2.6)

For air-water systems, the Kolmogorov velocity uLK
will need to be larger than σ/µl ∼

102 m/s in order for LK to exceed LH. Thus, this assumption is satisfied for most terres-
trial oceanic systems.

3. Bubble size distribution in breaking waves

Using the substantial mass test grouping criterion (Scheme C with φc,m = 0.5) in the
flood-fill algorithm described in the companion brief (Chan et al. 2018b), the bubble size
distribution was computed for the ensemble of breaking wave simulations described in
Section 2. Using the timescale T =

√
g/L such that the first impact occurs just after

t∗ = t/T = 1, the ensemble-averaged bubble size distribution is plotted from t∗ = 2.5
at intervals of approximately ∆t∗ = 0.5 in Figure 1. The nondimensional minimum grid
spacing and the estimate for the nondimensional Hinze scale given by Eq. (2.4) are also
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included in the plots in Figure 1. The effective size of nonspherical bubbles is computed
by measuring the size of a spherical bubble of equal volume. A direct comparison of
the evolution of the distribution with the corresponding wave structures from one of
the ensemble members was performed by Chan et al. (2018a) and will not be repeated
here. A numerical experiment to increase the nondimensional Hinze scale, keeping the
nondimensional grid spacing constant, was also performed by Chan et al. (2018a) and
will also not be revisited here.

Some key observations are listed here. First, a −10/3 power law initially develops in
the size distribution above the Hinze scale, and momentarily extends into the sub-Hinze-
scale region around 2.8 . t∗ . 3.0. This scaling persists above the Hinze scale until
about t∗ = 4.0. These observations are consistent with the dominance of quasi-steady
breakup by the action of turbulent eddies (Garrett et al. 2000) at scales both smaller and
larger than the Hinze scale around 2.8 . t∗ . 3.0, and at scales larger than the Hinze
scale before and after that, keeping in mind that the expression for the Hinze scale in
Eq. (2.4) is merely an order-of-magnitude estimate. At early times, the signature of the
turbulent cascade in the bubble size distribution is present only at the large scales because
air is being entrained and fragmented from the large scales; at late times, turbulent
breakup persists at the large scales as the smallest eddies in the system have the fastest
timescales and disappear most quickly. Second, a −3/2 power law eventually develops
below the Hinze scale at t∗ = 4.0, and persists beyond t∗ = 5.1. Note that this power-law
scaling occurs fairly close to the grid scale. Third, a −4 power law is somewhat visible at
intermediate sizes after t∗ = 4.0. The two power-law fits that emerge at t∗ = 4.0 (−3/2 for
the small scales and −10/3 for the large scales) corroborate the experimental observations
of Deane & Stokes (2002). A −4.36 power law was observed for what was postulated to
be the super-Hinze-scale bubbles in a statistically-stationary set of measurements from
air entrainment in a turbulent ship hull boundary layer (Masnadi et al. 2018), lending
credence to the steeper power-law fit observed at large scales and at later times in this
work where the role of buoyancy is expected to be more pronounced (than at earlier
times). The replacement of the −10/3 power-law scaling by other power-law scalings in
the size distribution, first at the small scales and then at the large scales, appears to
be concurrent with the decay of turbulence, which is also expected to occur first at the
small scales and then at the large scales. The apparent emergence of these new scalings
following the dissipation of turbulence may be caused by the eventual development of
a cascading process from small scales to large scales. The flow of air from small scales
to large is reminiscent of coalescence processes, and motivates a deeper analysis of the
driving of these processes by the background flow field with and without turbulence.

In light of the aforementioned evolution of the bubble size distribution—in particular,
the observed power-law scalings—over the handful of characteristic times that make
up the active wave-breaking period, one is motivated to examine the dynamics of the
size distribution more rigorously. In the next section, an introduction to the population
balance equation is provided in order to interpret the dynamics of the size distribution
in relation to breakup and coalescence events.

4. Population balance equation

4.1. Formulation of the population balance equation

Consider the bubble size distribution f(D; ~x, t), defined as the number of bubbles of a
certain effective size D per size interval at a given location in space ~x per unit volume
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Ensemble-averaged bubble size distributions from 30 simulations of a breaking Stokes
wave [every 85,000 time steps beginning at t∗ = 2.5, increasing in time from (a) to (f)]. Wave
parameters are detailed in Section 2. The dotted vertical line to the left denotes the grid reso-
lution, while the solid vertical line to the right denotes the estimated Hinze scale given by Eq.
(2.4). The solid sloped line to the left of the solid vertical line denotes a −3/2 power-law fit,
while the dotted sloped line to the right of the solid vertical line denotes a −10/3 power-law
fit in the first two rows and a −4 power-law fit in the last row. The error bars denote the 95%
confidence interval over the ensemble for each bubble size bin.

and at a given time t. The dimensions of f are (length)−4. f may be computed via
ensemble averaging over statistically-independent experimental or numerical runs of the
same setup, in the limit of an infinite number of ensemble members. In the absence of
dissolution and other mass transfer processes, one may phenomenologically construct a
population balance equation describing the evolution of f (Williams 1958; Hulburt &
Katz 1964; Valentas & Amundson 1966; Ramkrishna 1985; Williams 1985; Mart́ınez-
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Bazán et al. 1999)

∂f

∂t
+∇~x · (~uf) = Sb + Sc. (4.1)

Here, ~u(D; ~x, t) is the mean velocity of all the bubbles of effective size D at the location
~x and time t, and Sb and Sc are the rates of change of f(D; ~x, t) due to breakup and
coalescence processes, respectively. Note that Sb and Sc may involve nonlocal fluxes in
size space such that the component fluxes transfer bubbles across a noninfinitesimal
size range (i.e., cause bubbles to undergo significant changes in size). If the system is
homogeneous in space, then one may simplify the equation above to

∂f

∂t
= Sb + Sc, (4.2)

where f = f(D; t) describes the number of bubbles of effective size D per unit volume
per size interval at a given time t averaged over all homogeneous directions. One may
also interpret Eq. (4.2) as the outcome of integrating Eq. (4.1) over the physical domain
of interest, assuming that the spatial boundary fluxes of f go to zero at the boundaries,
or that they cancel each other out at appropriate boundary pairs due to homogeneity or
periodicity. In other words, Eq. (4.2) is the volume-averaged equivalent of Eq. (4.1).

4.2. Breakup and coalescence fluxes in size space

The forcing terms Sb and Sc in Eq. (4.2) may each be expanded into a source flux and a
sink flux. Assuming only binary breakup events occur, the breakup flux may be written
as

Sb(D) = 2

∫ ∞

D

qb(D|Dp)gb(Dp)f(Dp)dDp − gb(D)f(D), (4.3)

where qb(D|Dp) is the probability that a bubble of size Dp breaks into a bubble of size
D (and another bubble such that the total volume remains constant), and gb(D) is the
breakup frequency of a bubble of size D. Observe that gb(D) has dimensions (time)−1,
and may be computed, after volume averaging over each ensemble member, as follows

gb(D) =
# breakup events for bubbles of size D per unit time per unit volume (vol.)

# bubbles of size D per unit vol.
.

(4.4)
When turbulent breakup is dominant (D � LH), it has been postulated on theoretical
grounds (Coulaloglou & Tavlarides 1977) and confirmed experimentally with a refined
theoretical model (Mart́ınez-Bazán et al. 1999) that gb ∼ D−2/3. One may obtain this
relation from Eq. (2.2) by assuming that a bubble is most likely acted upon by a turbulent
eddy of the same size, and thus that the breakup time of the bubble is of the same order
as the turnover time of the eddy. Next, assuming only binary coalescence events occur,
the coalescence flux may be written as

Sc(D) =
1

2

∫ D

0

∫ D

0

f(D1)f(D2)qc(D1, D2)h(D1, D2)δ

(
D − 3

√
D3

1 +D3
2

)
dD1dD2

−f(D)

∫ ∞

0

f(Dp)qc(D,Dp)h(D,Dp)dDp,

(4.5)
where qc(D1, D2) is the probability that a bubble of size D1 coalesces with a bubble
of size D2 given that they have collided, or the coalescence efficiency, and h(D1, D2) is
the frequency of collision events involving bubbles of sizes D1 and D2. Note that the
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coalescence efficiency qc represents the likelihood that two bubbles of two particular
sizes eventually coalesce after they come into contact, instead of bouncing apart. It is a
function of the curvatures of the two interacting surfaces (∼ 1/D1 and 1/D2), as well as
the characteristic relative velocity between the two surfaces, which may also be modeled
as a function of the two curvatures [see, also, the discussion of the coalescence of two liquid
bodies by Chan et al. (2016, 2018a)]. In a numerical scheme where each computational
cell (or node) may contain at most one phase interface, and the orientation of each
interface depends on the orientation of the interfaces in the neighboring cells, two liquid
or gas bodies will numerically coalesce once they come within one grid-cell width of each
other. Thus, in the absence of artificial repulsive forces or subgrid-scale modeling, the
effective numerical qc should be taken as 1 when the model adopted for h is adequate. One
may follow the kinetic-theory-based arguments put forward by Coulaloglou & Tavlarides
(1977) and Prince & Blanch (1990) in order to write h(D) as δu(D1, D2)A(D1, D2),
where A ∼ (D1 + D2)2 is the collision cross section. Coulaloglou & Tavlarides assumed
δu ∼ (u21 + u22)1/2 is the characteristic relative velocity between two particles of sizes D1

and D2 moving at characteristic speeds u1 and u2. In general, ui ∼ Dβ
i . In a fashion

similar to the sink term in Sb, one may write the source term in Sc as

Sc,+(D) =
1

2

∫ D

0

∫ D

0

f(D1)f(D2)qc(D1, D2)h(D1, D2)δ

(
D − 3

√
D3

1 +D3
2

)
dD1dD2

≡ gc(D)f(D),

where gc(D) may be computed, also after volume averaging over each ensemble member,
as follows

gc(D) =
# coalescence events creating bubbles of size D per unit time per unit vol.

# bubbles of size D per unit vol.
.

(4.6)
Note that gc is not a quantity whose physical significance is immediately evident since the
number of coalescence events creating bubbles of size D should not depend on the number
density of bubbles of size D. Nevertheless, it is straightforward to measure numerically,
and its scaling with D may be of interest.

4.3. Most favorable size ratio for coalescence events

Suppose turbulent breakup of large air cavities early in the flow generates bubbles whose
size distribution momentarily follows a −10/3 power law in some size range. What is the
size ratio that favors coalescence the most given this initial size distribution of bubbles?
Suppose a bubble of size D is formed from the coalescence of bubbles of sizes D1 and D2

within this size range. Then, D3
1 +D3

2 = D3 by the conservation of mass. If r = D2/D1 >
1, then r = (D3/D3

1 − 1)1/3. The coalescence source flux may then be written as

Sc,+ ∼ f(D1)f(D2)δu(D1, D2)A(D1, D2)

∼ D−10/31

(
D
−10/3
1 r−10/3

)(
D2β

1 +D2β
1 r2β

)1/2
(D1 +D1r)

2

∼ D−14/3+β1 r−10/3
(
1 + r2β

)1/2
(1 + r)2. (4.7)

It may be shown, for the conditions of interest, that this flux is maximized when r →∞.
In other words, large-size-ratio coalescence events (between a very small bubble and a
very large bubble) are highly favored from a collisional standpoint. See Appendix A for
a more detailed characterization of Sc,+.
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Figure 2. Family tree of bubbles constructed by the bubble tracking algorithm described by
Chan et al. (2018b) for the breakup and coalescence of bubbles in one of the members of the
simulation ensemble described in Section 2. The time interval between snapshots is ∆t∗ = 0.03.
The bubble tags (vertical axis) are arbitrary. Each horizontal line depicts a bubble, and adopts
a color between blue (largest bubble, darker in grayscale) and yellow (smallest bubble, lighter
in grayscale) that is visible in the online version of this brief. Solid vertical lines (red in the
online brief, thicker and darker in grayscale) depict breakup events, while dotted vertical lines
(green in the online brief, thinner and lighter in grayscale) depict coalescence events. The colors
of these lines are not essential to the interpretation of the tree for the purpose of this brief.
Circles denote birth events and crosses denote death events. The significance of these events in a
mass-conserving simulation with no inflow or outflow of air is discussed by Chan et al. (2018b).

5. Breakup and coalescence frequencies and probabilities

Using the bubble tracking algorithm described in the companion brief (Chan et al.
2018b), bubble breakup and coalescence events were identified in the simulation ensem-
ble between t∗ = 1.2 and t∗ = 4.8. In a similar fashion to the last figure in the companion
brief, Figure 2 illustrates what the timeline for these events looks like for one of the en-
semble members between t∗ = 1.2 and t∗ = 2.7. The time interval between snapshots
adopted in this work is ∆t∗ = 0.03. From Eqs. (2.2) and (2.3), one may estimate the
minimum time interval required to capture, on average, the characteristic breakup fre-
quency of bubbles at the Hinze scale (∆t∗)H ∼ 0.02 for the wave considered in this work.
One may also show, from these equations, that the breakup frequency corresponding
to bubbles larger than the Hinze scale will be smaller (recall, from Section 4.2, that
gb ∼ D−2/3); thus, the time interval necessary to capture, on average, the breakup of
these larger bubbles will be longer. The selected time interval between snapshots limits,
on average, the maximum gb that can be measured, which satisfies gb,max∆t∗ ∼ 1. Since
the time interval selected in this work is on the same order as the minimum time interval
estimated for the limiting case (Hinze scale), the maximum gb that can be measured is
close to the gb expected at the Hinze scale, and work is ongoing to collect data with more
frequent snapshots to better resolve this interval.

5.1. Breakup and coalescence frequencies

Figure 3 plots the ensemble-averaged and time-averaged breakup frequency gb for the
first and second halves of the duration of interest (1.2 < t∗ < 3.0 and 3.0 < t∗ < 4.8).
At early times, a −2/3 power law is clearly observed for gb over a wide range of scales,
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(a) (b)

Figure 3. Breakup frequencies (gb) for the simulation ensemble described in Section 2 for
1.2 < t∗ < 3.0 (a) and 3.0 < t∗ < 4.8 (b). A description of the vertical lines and error bars is
provided in the caption of Figure 1. The sloped solid line depicts a −2/3 power-law fit.

suggesting the presence of a turbulent fragmentation cascade as discussed in Section 4.
This is consistent with the −10/3 power law observed in the ensemble-averaged bubble
size distribution in Figure 1. The −2/3 power-law fit for gb is less adequate at later
times (t∗ > 3.0), suggesting the cascade has largely ceased by then. Note that the −2/3
power-law fit in Figure 3(a) does not extend completely into what was identified as the
super-Hinze-scale region. There are a number of factors contributing to this peculiarity.
First, super-Hinze-scale bubbles of different sizes are formed by the rupture of large air
cavities, such as the cylindrical air cavity trapped when the wave overturns and breaks
[see Figure 18 of Chan et al. (2018a)]. This means that the turbulent fragmentation
cascade does not uniformly begin at a single scale, since each of these super-Hinze-scale
seed bubbles generates its own fragmentation cascade from a different originating scale.
Second, the statistics in Figure 3 are time-averaged. The number of super-Hinze-scale
seed bubbles varies in time, from a negligible number before the large cavities have
fragmented, to a significant number after this fragmentation has taken place, and again
to a negligible number once these seed bubbles have fragmented and no new seed bubbles
are generated to take their place. This variation in the number of super-Hinze-scale seed
bubbles may obfuscate the interpretation of the breakup frequency at these large scales.
Mathematically, one should note that

∫
gbdt 6= (

∫
fgbdt)/(

∫
fdt). As remarked in the

companion brief (Chan et al. 2018b), ensemble averaging is the proper way to take
statistics in a statistically-unsteady flow, and work is ongoing to collect more converged
statistics after reducing the averaging time window for these events in an attempt to
move towards ensemble averaging. Third, the turbulence in the continuous phase may be
sufficiently modulated at these large scales by the presence of the dispersed phase.

Figure 4 plots the ensemble-averaged and time-averaged coalescence frequency gc for
the first and second halves of the duration of interest (1.2 < t∗ < 3.0 and 3.0 < t∗ < 4.8).
The coalescence frequency peaks close to the estimated Hinze scale, and work is ongoing
to determine the physical significance of this observation. Coalescence is potentially in-
hibited at large scales where the effects of turbulence prevent imminent collisions from
going to completion [see, e.g., the discussions by Shinnar & Church (1960), Shinnar
(1961) and Church & Shinnar (1961) for droplets, and Prince & Blanch (1990) for bub-
bles, which model this inhibition in qc when the kinetic theory model for h is maintained].
In addition, the variation of the coalescence frequency with bubble size differs in both
time intervals, suggesting that the nature of the background flow inducing the coales-
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(a) (b)

Figure 4. Coalescence frequencies (gc) for the simulation ensemble described in Section 2 for
1.2 < t∗ < 3.0 (a) and 3.0 < t∗ < 4.8 (b). A description of the vertical lines and error bars is
provided in the caption of Figure 1.

cence of bubbles is different in both time intervals. A more precise characterization of
the background flow in these time intervals is in progress.

5.2. Breakup and coalescence probabilities

Before analyzing the probability distributions of the relative sizes of the final (breakup)
/ initial (coalescence) bubbles involved in these breakup and coalescence events, it is in-
structive to divide the size range of observable bubbles into three distinct phenomenolo-
gies: resolved small bubbles (sub-Hinze-scale bubbles with nondimensional radii 6 ×
10−3 < r∗ = r/L < 1.2× 10−2), large bubbles (super-Hinze-scale bubbles, 1.2× 10−2 <
r∗ < 3× 10−2) and very large “bubbles” (super-Hinze-scale air cavities, r∗ > 3× 10−2).
This enables a more targeted analysis of the various breakup and coalescence events. In
addition, the subsequent figure will analyze the occurrence of these events as a function
of the volume ratio of the constituent bubbles. The bubble volume ratio distribution for
breakup events corresponds to qb. For breakup events, the volume of each of the two
descendant (child) bubbles as a ratio of the sum of the volumes of these bubbles is of in-
terest. For coalescence events, the volume of each of the two ancestor (parent) bubbles as
a ratio of the sum of the volumes of these bubbles is of interest. In the case of the latter,
the simulation ensemble inherently requires that all bubble pairs that come into contact
undergo successful coalescence since the grid resolution of these simulations does not
permit accurate temporal and spatial resolution of coalescence events. In other words,
the coalescence events accounted for here include physical and numerical coalescence,
and the effective qc for most of these events is 1 provided h is modeled adequately.

Figure 5 plots the statistics of the breakup and coalescence events where the ancestor
(breakup) / descendant (coalescence) bubble belongs to the category of large bubbles. The
breakup distribution indicates that breakup generates bubble pairs of a broad range of
size ratios. The coalescence distribution indicates that large-size-ratio coalescence events
are favored. This supports the kinetic theory framework explored in Sections 4.2 and
4.3, and motivates the need to accurately capture large-size-ratio events in the bubble
tracking algorithm (Chan et al. 2018b). Note that coalescence events where the smaller
ancestor bubble has a nondimensional radius r∗ < 6 × 10−3 have not been included in
Figure 5. If these events are included, the bias in the distribution towards large-size-ratio
events will be more significant. From both distributions, it appears that the number of
coalescence events is on the same order as the number of breakup events, suggesting that
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(a) (b)

Figure 5. Conditional bubble volume ratio distributions due to some of the breakup (a) and
coalescence (b) events in the simulation ensemble described in Section 2. For breakup, events
where the ancestor bubble is a large bubble (super-Hinze-scale bubble) and both descendant
bubbles have nondimensional radii r∗ > 6 × 10−3 are included. The distribution is divided into
two groups. The top portion of each bar (blue in color, darker in grayscale) denotes events where
the smaller of the two descendant bubbles is a large bubble. The bottom portion (green in color,
lighter in grayscale) denotes events where the smaller of the two descendant bubbles is a resolved
small bubble (sub-Hinze-scale bubble). For coalescence, events where the descendant bubble is
a large bubble and both ancestor bubbles have nondimensional radii r∗ > 6×10−3 are included.
The top (blue/darker) portion of each bar denotes events where the larger of the two ancestor
bubbles is a large bubble. The bottom (green/lighter) portion denotes events where the larger
of the two ancestor bubbles is a resolved small bubble.

breakup and coalescence events have comparable impact on the dynamics of the bubble
size distribution in breaking waves, in contrast to what Hinze (1955) postulated in the
derivation of the Hinze scale. Because these events dominate at different stages of the
flow, the resultant distributions evolve in time in a rich manner. In addition, unity-size-
ratio events involving bubbles of almost equal sizes appear to be favored in both breakup
and coalescence. The physical significance of this trend is also being examined.

6. Conclusions

The bubble identification and tracking algorithms outlined in the companion brief (Chan
et al. 2018b) are used to compute and analyze the bubble size distribution resulting from
an ensemble of simulations of breaking Stokes waves. The distribution is compatible with
a turbulent breakup mechanism at early times, and shifts, first at the small scales and
then at the large scales, at later times. This evolution of the bubble size distribution is
further analyzed within a population balance equation-based framework that accounts for
transfer fluxes in size space due to breakup and coalescence events. Breakup and coales-
cence frequencies and probabilities are computed directly from the simulation ensemble
to provide insights into the population dynamics. The breakup frequencies support the
turbulent breakup mechanism, and large-size-ratio coalescence events observed in the
simulations support a kinetic-theory-based approach for describing and modeling coa-
lescence. Based on the observations collected from these tools, a potential sequence of
events governing the evolution of the bubbles is proposed as follows: as the wave breaks,
turbulent fragmentation of large air cavities generates smaller bubbles of a wide range of
sizes. A −10/3 power-law size distribution is generated by this turbulent fragmentation.
Even though typical derivations of this power-law fit neglect the effects of coalescence,
evidence suggests that coalescence events may occur as frequently as breakup events in
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these flows, if not more. Subsequently, after the turbulence has mostly dissipated and
ceased to exist, a −3/2 power-law scaling develops in the size distribution for bubbles
smaller than what was formerly the Hinze scale—the Hinze scale is no longer a relevant
measure when the turbulence has mostly ceased to exist—and bubbles of intermediate
size begin to conform to a −4 power-law size distribution. Because the power-law scaling
at the small scales changes first, and then the scaling at the large scales, a coalescence
cascade from small scales to large scales could be developing late in the wave-breaking
process. Work is ongoing to identify the locations and corresponding features in the flow
where some of these breakup and coalescence events are occurring, in order to ascertain
the mechanisms generating these events and better model the characteristic length, time,
and velocity scales involved. Additional analysis of the breakup and coalescence statistics
is also under way to strengthen their connection with the model population dynamics. In
particular, derivation of more detailed models and scaling relations for gb, gc, qb, qc and
h is under way, and the relevant physical processes in the background flow contributing
to these breakup and coalescence events will hopefully be elucidated in the process.

As mentioned in the companion brief, a fundamental understanding of breakup and
coalescence processes that govern the formation and evolution of bubbles in breaking
waves may assist in developing subgrid-scale (SGS) models for turbulent bubbly flows.
In light of the observations above, a preliminary SGS model for the largest sub-Hinze-
scale bubbles is proposed as follows: at early times, poorly resolved bubbles should be
broken up into subgrid Lagrangian bubbles with frequency gb as if they were subject to
a turbulent fragmentation cascade that extends into the subgrid scales. Although not
directly investigated in this work, satellite bubbles are also expected from bubble pinch-
off events near the neck connecting the child bubbles (Gordillo & Fontelos 2007) and may
be modeled with capillary instability theory in tandem with the film bubbles discussed by
Chan et al. (2016, 2017, 2018a) and Mirjalili & Mani (2018). Coalescence models for these
subgrid Lagrangian bubbles will be necessary, and a more fundamental understanding of
the coalescence mechanisms in these waves will inform the development of these models.
Because large-size-ratio collisions between bubbles are favored, coalescence is expected
between pairs of subgrid bubbles, as well as between bubble pairs comprising one subgrid
bubble and one resolved bubble. These coalescence models will need to handle both
subgrid bubble-subgrid bubble and subgrid bubble-resolved bubble coalescence events.
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Appendix A. Conditions for monotonicity of the coalescence source flux Sc,+
Here, the conditions under which Sc,+ is monotonically decreasing are elaborated upon.

Recall the following expression for Sc,+

Sc,+ ∼ D−14/3+β1 r−10/3
(
1 + r2β

)1/2
(1 + r)2. (A 1)
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Note that the only free parameter in this problem is s = D1/D, where 0 < s < 1/ 3
√

2. r
may then be expressed in terms of s as r = (s−3− 1)1/3. Substituting this into Eq. (A 1)
yields

Sc,+ ∼ s−14/3+βr−10/3
(
1 + r2β

)1/2
(1 + r)2D−14/3+β .

It may be graphically verified for an initial −10/3 power-law bubble size distribution and
|β| ∼ O(1) that Sc,+ is a monotonically decreasing function of s, suggesting in these cases
that large-size-ratio coalescence events are highly favored from a collisional standpoint
when the number density of small bubbles sufficiently exceeds the number density of
large bubbles. It was observed that the range of β for which this monotonic trend is
present increases as the power law becomes steeper (i.e., if f ∼ Dγ and γ < 0, then as
the magnitude of γ increases). More generally, the range of validity of this monotonic
variation in Sc,+ in the parameter space {β, γ} may be derived by enforcing ∂Sc,+/∂s < 0
for 0 < s < 1/ 3

√
2, and the resulting constraint is

(2γ + β + 2)r3s3 − γ − βr2β/(1 + r2β)− 2r/(1 + r) < 0.
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