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1. Motivation and objectives

Breaking waves in oceans generate bubbles of a wide range of scales, which in turn in-
fluence interfacial mass, momentum and energy transfer processes (Thorpe 1992; Melville
1996), surface reflectance (Terrill et al. 2001; Reed & Milgram 2002; Zhang et al. 2004;
Seitz 2011; Crook et al. 2016), and the propagation of acoustic waves (Pumphrey & Crum
1988; Trevorrow et al. 1994; Stanic et al. 2009). Numerous experiments have been de-
vised to measure bubble populations as a function of bubble size due to breaking waves
generated under a wide variety of conditions. Of these, the experiments by Deane &
Stokes (2002) and Blenkinsopp & Chaplin (2010) were able to measure bubbles over a
size range spanning more than two decades (between 100 pm and 10 mm) within a single
experimental setup—one of the largest size ranges of simultaneously-measured bubbles to
date. While there are differences in the bubble size distributions reported in both works
due to the different wave parameters and measurement techniques used, as well as the
stage of wave breaking during which the measurements were obtained, there seem to be
two common themes in the resulting measurements: first, the distribution of the larger
bubbles appears to scale differently from the distribution of the smaller bubbles; second,
these distributions evolve significantly in time as the wave breaks. Similar observations
have been made in recent numerical simulations of breaking third-order Stokes waves
by Wang et al. (2016) and Deike et al. (2016). It appears, then, that different physical
mechanisms are at play at different length and time scales in the formation and dynamics
of bubbles in these breaking waves. These mechanisms have not been straightforward to
isolate and are a subject of active research.

As previously noted (Chan et al. 2016, 2017, 2018a), the cost of direct numerical simula-
tion of turbulent breaking waves with realistic amplitudes and wavelengths is prohibitive
due to the wide range of scales involved, necessitating the development of subgrid-scale
(SGS) models to enable the large eddy simulation of these flows. A physics-based SGS
model demands a fundamental understanding of the breakup and coalescence processes
leading to the development and subsequent evolution of the bubble size distribution near
and below the grid scale. With this goal in mind, an ensemble of simulations of breaking
Stokes waves of a smaller amplitude and wavelength is employed to better understand
these processes at the scales resolvable for these waves, in the hope that physical in-
sights at the smaller length scales to be modeled may eventually be elucidated for more
energetic waves. The current status of this work is documented in two research briefs:
in the first (present) brief, algorithms to identify bubbles and to detect bubble breakup
and coalescence events in a two-phase simulation with knowledge of the volume fraction
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field are detailed. In the second brief (Chan et al. 2018b), these algorithms are used to
characterize the evolution of the bubble size distribution in the aforementioned ensem-
ble, including the identification of breakup and coalescence events. Then, on the basis of
trends observed in the evolution of the distribution and accompanying events, a path-
way for the identification of potential mechanisms for bubble breakup and coalescence is
outlined.

This brief is organized as follows: in Section 2, several algorithms used to compute
bubble size distributions in two-phase simulations with knowledge of the volume fraction
field are discussed and compared for a simple test case (single drop) and a complex flow
field (breaking wave). In Section 3, an algorithm that detects breakup and coalescence
events by tracking bubble centroids and volumes is detailed with a demonstration case
(two-phase Taylor-Green vortex). Closing remarks on the various algorithms are provided
in Section 4. A discussion of the evolution of these distributions and the occurrence of
these events as gleaned from applying these algorithms to the breaking wave simulation
ensemble is deferred to the companion brief (Chan et al. 2018b).

2. Bubble identification algorithms for bubble size distribution computation
2.1. The traditional flood-fill algorithm as used in bubble identification

The traditional method for identifying bubbles in an interface-capturing or interface-
tracking scheme where the volume fraction of each phase in each computational cell—or
node in a node-centered code—is either immediately known or reconstructible is based
on the flood-fill algorithm, which is also used in raster graphic editors to color connected
areas. The exact mechanics of filling depend on whether the algorithm is implemented in
a stack-based (recursive) or queue-based (nonrecursive) fashion looping over each cell, or
with a multiple-queue-based (nonrecursive) approach looping over pairs of cells. To the
best of the authors’ knowledge, the algorithms used by Wang et al. (2016) and Deike et
al. (2016) perform the loop over each cell, while the algorithm implemented in this work
performs the loop over pairs of nodes (Kim et al. 2014). No difference in the final result is
expected between the various implementations. Once the filling is complete, the algorithm
yields contiguous groups of computational cells, where each group here is deemed to be
a bubble. The flood-fill algorithm guarantees that every cell in each contiguous group
is a neighbor of at least one other cell in the same group such that this pair of cells
satisfies a predetermined criterion. To obtain contiguous groups of cells corresponding
to bubbles in an air-water system, the selected criterion here might be that a pair of
neighboring cells is added to a group already containing at least one of the cells—or a
new group, if there are no such existing groups—if both cells contain nonzero amounts of
air. Mathematically, if two neighboring cells 7 and j have air volume fractions ¢; and ¢;,
then they are added to the group defined above if ¢;, ¢; > ¢, where the threshold air
volume fraction ¢. = 0. This grouping process is illustrated in Figure 1 in the context of
the volume-of-fluid (VoF) scheme adopted in the code used in this work (Kim et al. 2014),
but may be generalized to other interface-capturing and interface-tracking schemes if the
volume fraction in each computational cell may be reconstructed.

Because of its relative simplicity, the aforementioned bubble identification algorithm is
generally not expected to fail, except in the case where energetic impacts and turbulent
eddies create pinch-off events that may result in the formation of very small closely spaced
wisps of air. Each of these wisps corresponds to a single computational cell (or node)
containing a very small volume fraction of air. These wisps are possibly suppressed in
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FIGURE 1. Schematics illustrating the flood-fill algorithm as applied to the identification of
bubbles in an air-water system simulated by a volume-of-fluid (VoF)-based two-phase solver.
Each box in each grid corresponds to a single computational cell (median dual cell in the case
of a node-centered code), and each of the diagonal lines occupying the interior of some of these
cells corresponds to a planar numerical interface (here linear in a two-dimensional projection)
as is typical in piecewise linear interface calculation VoF schemes. Suppose that in each of these
divided cells, the portion closer to the center of the subfigure contains air and the other portion
contains water. Then, the volume approximately bounded by the entire set of these interfaces
should constitute a bubble. (a) The pair of crosses highlights a pair of neighboring cells that
satisfies the grouping criterion in Section 2.1 that both cells contain nonzero amounts of air,
or one of the alternative criteria listed in Section 2.2. (b) The crosses highlight all the cells
each of which belongs to at least one cell pair satisfying this grouping criterion. This contiguous
collection of cells will be identified by the flood-fill algorithm as a single bubble.

split VoF advection schemes [e.g., Scardovelli & Zaleski (2003), Weymouth & Yue (2010),
Baraldi et al. (2014) and Fuster et al. (2018)], where redistribution or dilatational fluxes
are employed to avoid overfilling or over-emptying of cells, and may occur more frequently
in unsplit schemes where it is unnecessary to employ these fluxes to maintain volume
conservation. When these wisps occur, it is possible that a large collection of these air
wisps will be neighboring, leading to them being grouped together and identified as a
single large bubble by this algorithm, even though they may not necessarily correspond
to a single bubble in a physical wave. One such spurious bubble identified in one of the
breaking wave simulations performed in this work [see Chan et al. (2018a) and Section
2.4] is depicted in Figure 2. Note that in this example, the volume fraction of air in
many of these cells is between 102 and 10~*, and thus larger than typical machine-
precision errors. (See, also, the fourth row of Table 1.) Large spurious bubbles may contain
sufficiently large volumes of air to appear in the instantaneous bubble size distribution at
resolvable radii and thus introduce errors in the distribution. These errors will be further
discussed in Section 2.4. Accurate reporting of bubble size distributions in two-phase
numerical simulations, especially of flows with energetic impacts and turbulent eddies,
then demands the exclusion of these spurious bubbles through the modification of the
employed bubble identification method, and in particular the grouping criterion used for
the pairwise cell (or node) evaluation.

2.2. Modifying the pairwise evaluation criterion in the flood-fill algorithm

The original grouping criterion suggested above (denoted Scheme A in the subsequent
discussion)—that both cells in the cell pair being considered contain nonzero amounts of
air—artificially chains closely spaced cells with very small volume fractions of air together.
Alternative grouping criteria, such as the following, may be considered to eliminate this
corner case. First, one may exclude computational cells containing small volume fractions
of air (clipping, denoted Scheme B in subsequent figures and tables with a specific choice
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FIGURE 2. Locations of nodes that were identified as part of a spurious air bubble detected using
a naive application of the flood-fill algorithm (grouping criterion of Section 2.1) on a snapshot
of a Stokes water wave simulation after breaking. The perimeter nodes of the spurious bubble
are shaded by the volume fraction of water (1 — ¢) at each computational node. (a,b) The same
spurious bubble from different view angles. The light and smooth translucent surfaces in the
subfigures represent the ¢ = 0.5 isosurface of the wave. The parameters of this simulation are
available in a publication by Chan et al. (2018a) and Section 2.4. These snapshots were obtained
at a nondimensional time ¢t* = 11.8, well after the first impact at about t* = 1.2.

of ¢.). In order for cells to be considered in the grouping algorithm under this criterion,
their air volume fraction should be above a certain threshold ¢. > 0. A sufficiently
large threshold will prevent spurious bubbles involving small wisps of air from being
identified, but will also numerically clip the volumes of larger bubbles whose boundaries
are likely composed of some cells with small air volume fractions. This is due to the
inherent nature of volume discretization: if the surface of the bubble volume does not
conform to the underlying mesh geometry, then cut cells of a wide range of air volume
fractions are almost certain to be generated where the surface intersects with the mesh.
Second, one may only include computational cells directly associated with a large mass
of air (substantial mass test, Scheme C). In order for a pair of cells to be considered in
the grouping algorithm under this criterion, at least one of the cells should have an air
volume fraction above a certain threshold ¢. ., > 0. Physically, small wisps of air are
only considered for grouping if they are attached to a large mass of air. The corner case
of this criterion (see, also, the penultimate row of Table 1) is that if two large masses of
air are connected by a thin air bridge in a single cell with a small air volume fraction,
then they will be grouped by the algorithm as a single bubble. Third, one may only
include computational cells indirectly associated with a large mass of air (substantial
neighbor test, Scheme D). In order for a pair of cells to be considered in the grouping
algorithm under this criterion, at least one of the cells should have one neighbor (or
more) with an air volume fraction above a certain threshold ¢., > 0, or itself satisfy
this condition. This also restricts small wisps of air to be considered for grouping only if
they are attached to a large mass of air. The corner case of this criterion (see, also, the
last row of Table 1) is that if two large masses of air are connected by a thin air bridge
that is one cell wide and two cells long (or two small bubbles each taking up one cell),
then they will be grouped by the algorithm as a single bubble. Note that the corner cases
of the substantial mass and neighbor tests do not necessarily indicate deficiencies of the
schemes, but rather are representative of an inherent limitation of a VoF field with finite
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Case Scheme A Scheme B Scheme C  Scheme D

v v v/

1.00|1.00

1.00

049 v X v o/

0.44

0.09 / x x /

1041107 / x x x

0.4910.93 / x / /

0.31{049 / x x /

TABLE 1. Pairs of cells that are permitted (checkmark)/not permitted (cross) for inclusion in
the grouping algorithm subject to the various grouping criteria: original criterion in Section
2.1 (Scheme A), clipping (Scheme B) with ¢. = 0.5, substantial mass test (Scheme C) with
¢e,m = 0.5, and substantial neighbor test (Scheme D) with ¢, = 0.5. Each row in the table
corresponds to a particular pair of cells, depicted together with some of its neighbors, in the first
column. For an explanation of the grid and lines in each subfigure, refer to the caption of Figure
1. The numbers in each cell correspond to the local volume fraction of air. The two cells under
consideration have their volume fractions in black; the other cells have their volume fractions
in gray. The volume fraction field in the first three rows of the table is identical, with different
cell pairs highlighted in each row.

resolution: when a thin air bridge is indistinguishable from a small, underresolved bubble
or a small air protrusion with no additional information available, none of the geometries
necessarily represent reality more accurately, and any decision by any scheme to favor
any of the geometries is consequently arbitrary to a certain degree.

Table 1 illustrates the types of volume fraction pairs that are permissible for grouping
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Scheme || Volume error /A? | Centroid error/A || Volume error/A* | Centroid error/A
(D/A = 8) (D/A =8) (D/A = 16) (D/A = 16)
Bl 2742 (2+£1)x 1072 10144 (1.340.8) x 1072
B2 2.440.3 (5£2)x 1073 8.8+0.5 (2+1)x 1073
C (4+3)x107? (3+2)x107* (8+3)x 1072 | (1.34+0.8) x 107*
D (54+6) x 1077 (T+£7) x107° (241) x107° (442) x107°

TABLE 2. Nondimensional volume and centroid location errors for the case of the drop advected
with an imposed velocity. In each entry, the first value refers to the mean absolute deviation
from the ground truth, while the second value refers to the root-mean-square deviation. Here,
D denotes the drop diameter and A denotes the grid spacing. The errors are plotted for the
following grouping criteria: clipping with ¢. = 0.5 (Scheme B1), clipping with ¢. = 0.1 (Scheme
B2), substantial mass test (Scheme C) with ¢c» = 0.5, and substantial neighbor test (Scheme
D) with ¢c,n =0.5.

under the constraints of the various grouping criteria above. Generally, and as suggested
by the cases considered in Table 1, the volume loss encountered by a large volume due
to the culling of cell pairs by the various grouping criteria follows the trend: clipping =
substantial mass test 2 substantial neighbor test; i.e., the first scheme incurs the largest
volume error, and the third scheme incurs the smallest (on average). This is shown on a
statistical basis in the next subsection.

2.3. Comparison of algorithms: single drop

In order to quantitatively compare the errors incurred by the various grouping criteria,
the volume and center-of-mass location of a moving water drop in air are evaluated for the
various schemes. The drop is moved across the computational domain in two ways: first,
the drop is advected with an imposed velocity and without deformation; second, the drop
is advected across the domain subject to the solution of the Navier-Stokes (N-S) equations
using the solver described by Kim et al. (2014). The former effectively provides samples
of the volume and centroid location at different drop positions relative to the mesh, while
the latter enables a glimpse of the expected performance of the various schemes closer
to a typical use case where there is coupling between the momentum of both phases.
The parameters of the latter case are outlined in the caption of Table 3. In both cases,
the computational domain selected was cubic and periodic with 5 drop diameters and
an equal number of cells along each axis, and all schemes were tested on meshes with 8
and 16 cells across the initial drop diameter. Also, here, the original grouping criterion in
Section 2.1 provides the ground truth, so all computed errors are relative to the quantities
yielded by the original grouping criterion. Table 2 lists the nondimensional volume and
centroid location errors for the various schemes in the case of the drop advected with an
imposed velocity, while Table 3 lists the same errors for the drop advected by the solution
of the N-S equations. All length scales are normalized by the grid spacing. In these cases,
the volume and centroid location errors decrease among the schemes in the following
manner: clipping > substantial mass test > substantial neighbor test, as was asserted at
the end of Section 2.2. Note, also, that the normalized location errors are much smaller
than the normalized volume errors. In addition, the difference between the errors from
the case of the drop advected with an imposed velocity and those from the case of the
drop advected by the solution of the N-S equations does not seem to be significant.

In an attempt to generalize the computation of the volume error, it is claimed here
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Scheme || Volume error /A% | Centroid error/A || Volume error/A* | Centroid error/A
(D/A =18) (D/A =18) (D/A =16) (D/A =16)
B1 27+2 (2+1) x 1072 1035 (1.540.9) x 1072
B2 2.6+0.3 (5£2)x 1073 9.1+0.8 (3+1)x1073
C (10+£4) x 1072 (T4+4)x107* (14+4) x 1072 (24+1) x 107
D Less than m.p. Less than m.p. Less than m.p. Less than m.p.

TABLE 3. Nondimensional volume and centroid location errors for the case of the drop advected
by the solution of the N-S equations. Refer to the caption of Table 2 for the definitions of the
symbols and schemes. Using the initial drop diameter D and velocity U as the characteristic
length and velocity scales for the motion of the drop, the initial drop Weber and Stokes numbers
may be expressed as We = p,U?D /o = 25 and St = pUD/uy = 1.5 x 10°, respectively, where
[ denotes liquid and g denotes gas. Here, m.p. denotes machine precision, and “less than m.p.”
indicates that the computed error is associated with a value less than the standard double
precision machine epsilon ~ 1071¢.

that the nondimensional volume error is proportional to the nondimensional surface area
bounding the entire volume, and that the constant of proportionality is a function of only
the grouping criterion used. This proportionality is demonstrated for a sufficiently large
spherical volume with diameter D. Suppose that the only source of volume error is the
culling of some of the cut cells at the surface by the grouping criterion (e.g., as suggested
by the first three cases in Table 1). The volume error may then be approximated as
being proportional to the difference in the volume of the sphere, V; = 7D3/6, and the
volume of the same sphere slightly enlarged, Vo = 7(D + AD)3/6, where AD is on the
order of the grid spacing. Assuming AD < D, the volume difference may be written
as 0V = Vo — Vi &~ n1D?AD/2. Correspondingly, the volume error AV, oc §V may be

expressed as
AVe (D’
(AD)3 AD )

s ().

for some constant of proportionality M. It may further be shown that for a sufficiently
large spherical volume of size D, the corresponding relative diameter error AD,,/D may
be estimated as

(2.1)

One may then write

(2.2)

ADey, AD
o~ 2M o
In particular, one may obtain, from Eq. (2.2), AVey = MAD7D? ~ 1D?AD¢y, /2.
In Section 3, the principle of mass conservation will be used to determine bubble
breakup and coalescence events. This demands that the volume of each bubble be known
as accurately as possible from one flow snapshot to another. These breakup and coales-
cence events may involve one small bubble and one large bubble, but the total volume of
air must still be preserved during each event. Denote the diameter of the smaller bubble
as d and the diameter of the larger bubble as D. If the volume of the smaller bubble is on
the same order as the error in the volume of the larger bubble, then these large-size-ratio
events may not be accurately detected after invoking the principle of mass conservation.

(2.3)
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Scheme M r/\/ﬁ M T/\/N
(D/A=38) | (D/A=38) | (D/A=16) | (D/A =16)
B1 0.1 1 0.1 1
B2 0.01 4 0.01 4
C 2x107% 30 1x 1074 40
D 3x107° 8 x 103 2x107° 9 x 103

TABLE 4. Values of M and r as defined in Eqs. (2.2) and (2.5), respectively, for the case of the
drop advected with an imposed velocity. Refer to the caption of Table 2 for the definitions of the
symbols and schemes. The relative diameter error for each drop and scheme may be obtained
by substituting M into Eq. (2.3).

Preempting the discussion in Section 3.1, the critical size ratio » = D/d where this occurs
is of interest. This constraint may be expressed as

. (%)3 Yy l (szdDﬂ Y [ (gN) ] | (2.4)

D N
"Ta T Ve
where N = d/(AD) is the number of cells across the smaller bubble of diameter d.
Observe that r/ VN is a function of only M. Thus, the better the resolution of the
smaller bubble, the larger the critical size ratio r.

Returning to the single drop test case, Tables 4 and 5 re-express the volume errors in
Tables 2 and 3, respectively, in terms of M and r/ V/N. Note that the values of M and
r/v/N do not seem to be sensitive to the resolution of the drop, although results from
more ratios of D/A (where A denotes the grid spacing) will be necessary to confirm
this. Again, the difference between the errors from the case of the drop advected with
an imposed velocity and those from the case of the drop advected by the solution of the
N-S equations does not seem to be significant. These observations support the hypothesis
that M and thus r/v/N are functions of only the grouping criterion for sufficiently well-
resolved drops (or bubbles). Since Schemes B and C appear to provide reasonable support
for r/v/N (< 100) in realistic grids with an appropriate threshold choice and do not
preserve long and thin air bridges (see Table 1), which are typically poorly resolved,
most of the subsequent discussion will be focused on these two schemes.

or

(2.5)

2.4. Comparison of algorithms: breaking wave

The various grouping schemes are now applied to the identification of bubbles in an
ensemble of simulations of breaking waves to determine the influence of the errors of
the various schemes on the computation of bubble size distributions in a turbulent flow.
30 simulations of a breaking third-order Stokes wave (air-water) with the dimensionless
parameters We = 1.6 x 103 and Re = 1.8 x 10° were performed for this test. Using
the wavelength L as the characteristic length scale, and the corresponding deep water
wave velocity ur, = \/gL/2w as the characteristic velocity scale corresponding to this
length scale, the Weber and Reynolds numbers of the wave may be defined as We =
pu? L/o and Re = pyur L/, respectively. Here, py, 1, and o are the liquid density and
viscosity, and the liquid-gas surface tension coefficient, respectively. The computational
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Scheme | M (D/A=8) | r/VN (D/A=8) | M (D/A=16) |r//N (D/A =16)

B1 0.1 1 0.1 1
B2 0.01 4 0.01 4
C 5x 107" 20 2x107* 30
D Less than m.p. 1/(Less than m.p.) Less than m.p. 1/(Less than m.p.)

TABLE 5. Values of M and r as defined in Egs. (2.2) and (2.5), respectively, for the case of
the drop advected by the solution of the N-S equations. Refer to the caption of Table 2 for the
definitions of the symbols and schemes. Here, m.p. denotes machine precision, and “less than
m.p.” indicates that the computed coefficient is associated with a value less than the standard
double precision machine epsilon ~ 107'¢. The relative diameter error for each drop and scheme
may be obtained by substituting M into Eq. (2.3).

mesh consisted of about 4.2 million mesh nodes, the minimum grid spacing Ay, was
L /216, and the length of the computational domain along each Cartesian axis was L. The
mesh is nonuniform and is coarser closer to the edges of the domain in the wave-normal
direction, such that a large majority of the generated bubbles are resolved with the
minimum grid spacing. The wave steepness, which is the product of the wave amplitude
and the fundamental wavenumber 27/L, was 0.55, and the corresponding initial velocity
field was documented by Iafrati (2009). Periodic boundary conditions were employed in
the directions parallel to the interface, and slip boundary conditions were employed in
the wave-normal direction. Since the flow under consideration is statistically unsteady,
ensemble averaging is more appropriate than time averaging for obtaining flow statistics.
Using the timescale T = \/g/L such that the first impact occurs just after t* = ¢/T =
1, ensemble-averaged bubble size distributions generated with various grouping criteria
in the flood-fill algorithm are plotted at ¢* = 2.5 and t* = 4.0 in Figures 3 and 4,
respectively. The nondimensional radius bin sizes used to compute the size distributions
were selected such that they were on the order of, if not smaller than, the nondimensional
radius errors corresponding to the volume errors predicted in Section 2.3, as demonstrated
in Table 6. Under this constraint, sensitivity of the shapes of the distributions to the
choice of the bin size was not observed. Some observations on the size distributions are
in order here. First, the choice of the grouping criterion greatly influences the power
laws that result from the distributions. Care should thus be taken in interpreting power
laws from distributions generated using grouping criteria that result in large volume
errors. Second, the distributions from the application of no clipping (Scheme A, ¢. = 0)
exhibit large variances in their data, suggesting the large influence of spurious bubbles
on the distributions. Third, the distributions from the application of limited clipping
(Scheme B2, ¢. = 0.1) and the substantial mass test (Scheme C, here with ¢, ., =
0.5) are mostly indistinguishable, with significant variations still present in the data at
large radii, suggesting that the difference in volume error inherent in the schemes as
investigated in Section 2.3 is as significant as the difference in the way the schemes treat
anisotropic, nonspherical bubbles with thin air bridges connecting large air masses. An
example of such a bubble is depicted in Figure 5. Work is ongoing to develop methods
that consistently deal with these anisotropic bubbles in a grid-independent fashion.
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Scheme B1 B2 C Bin size
Nondimensional
radius error or 4x107* 5x107° 9x 107 2x107%
interval

TABLE 6. Errors in the nondimensional bubble radius due to the volume errors incurred by
the various grouping criteria used in the bubble identification algorithm as discussed in Sec-
tion 2.3, in comparison with the size of the bin in nondimensional radius space containing the
nondimensional minimum grid size Amin/L (depicted by a dotted vertical line in Figures 3 and
4). Refer to the caption of Figure 3 for a description of the various schemes. Here, Scheme C
(substantial mass test) is implemented with ¢¢,m = 0.5. The errors are computed using Eq. (2.2)
and the values of M listed in Table 4. This is the limiting case since the bin size selected in this
work increases exponentially with nondimensional radius, while the nondimensional radius error
only increases weakly with nondimensional radius [e.g., by considering the leading-order error
term in the series truncation approximation used to construct Eq. (2.2)], and may otherwise be
approximated as M Anin/L [see, e.g., Eq. (2.3)].

3. Bubble tracking algorithm for breakup and coalescence detection

The bubble identification algorithm discussed in Section 2 enables the computation of
bubble size distributions in numerical simulations of two-phase flows, such as the break-
ing wave simulations described in Section 2.4. While this will be discussed in greater
detail in the companion brief (Chan et al. 2018b), it is evident from Figures 3 and 4
that these bubble size distributions evolve dramatically as the flow progresses. The bub-
ble identification algorithm alone, however, does not enable the computation of transfer
fluxes within these distributions in size (radius or diameter) space, as each distribution
is computed at a single time instant. Further physical insights may be obtained by ana-
lyzing the evolution of these distributions in time, which may be achieved by a bubble
tracking algorithm that keeps a tally of the number of bubbles in the system over time
and traces the lineage of each bubble. The continuation of bubbles, as well as the oc-
currence of breakup and coalescence events, can be determined through the application
of a constraint demanding the satisfaction of the conservation of mass. This constraint
needs to be supplemented with the knowledge that the simulation satisfies the Courant-
Friedrichs-Lewy (CFL) condition, as well as a good understanding of the errors incurred
by the bubble identification algorithm described in Section 2. Access to the conserva-
tive volume fraction field allows reliance on the principle of mass conservation, obviating
the need to rely on contour reconstruction (Li et al. 2008) or multiple-hypothesis track-
ing (Jaqaman et al. 2008). These constraints will now be discussed.

3.1. Constraints that should be satisfied during bubble breakup and coalescence

As a bubble travels within the domain, its mass (and thus volume in an incompressible
setting) remains constant from one flow snapshot to another even if it deforms. Even if
the bubble breaks up into two, or if two bubbles coalesce into one, the principle of mass
conservation is necessarily satisfied before and after the change in topology. Suppose
bubble #0 breaks up into bubbles #1 and #2 (or #1 and #2 coalesce to form #0).
Then, the volumes V; of the bubbles satisfy

Vo=Vi 4 Va. (3.1)
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FIGURE 3. Ensemble-averaged bubble size distributions from 30 simulations of a breaking Stokes
wave (t* = 2.5). Wave parameters are detailed in the main text. The grouping criteria used to
generate the distributions are the original criterion in Section 2.1 (a, Scheme A), clipping with
¢c = 0.5 (¢, Scheme B1), clipping with ¢. = 0.1 (d, Scheme B2) and the substantial mass test
(Scheme C) with ¢c,m = 0.5 (b). The dotted vertical line to the left denotes the grid resolution,
while the solid vertical line to the right denotes the estimated Hinze scale, which will be discussed
in the companion brief (Chan et al. 2018b). The power-law fits will also be discussed by Chan
et al. (2018b). The error bars denote the 95% confidence interval over the ensemble for each
bubble size bin.

By the definition of the center of mass, the centroids Z; of the bubbles also satisfy, just
before (t5) and after (¢};) the moment of breakup or coalescence tp,

fo(tg)‘/() = fl(tﬁ)Vl + fg(tzlg)‘/g (32)

Now, consider a continuing bubble, i.e., a bubble that does not break up or coalesce
between two flow snapshots n and n + 1. Because of the volume error AV, associated
with the bubble identification algorithm, which were discussed in Section 2.3, the volume
of a continuing bubble does not remain exactly the same between snapshots. Denote the
volume of a bubble at a flow snapshot j as V7. Then, V7 satisfies

V" = V" < AV (3.3)

If the numerical simulation satisfies the CFL condition, then each fluid-fluid interface
cannot traverse more than a single cell width in a single time step, multiplied by the
maximum permissible Courant number for the advection scheme adopted in the simu-
lation. It then follows that the centroid of the bubble remains stationary insofar as the
permissible distance error is the product of the local grid cell spacing Az, the number
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FIGURE 4. Ensemble-averaged bubble size distributions from 30 simulations of a breaking Stokes
wave (t* = 4.0). Wave parameters are detailed in the main text, and the corresponding grouping
criteria and other details are described in the caption of Figure 3.
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FIGURE 5. Example of an anisotropic, nonspherical bubble identified by a refined grouping
algorithm (substantial mass test grouping criterion, Scheme C with ¢c» = 0.5) at t* = 3.6.
(a) A portion of the ¢ = 0.5 isosurface looking into the wave in the streamwise direction from
a section cut. (b) The same portion with the identified bubble highlighted and its perimeter
nodes shaded with the local water volume fraction in a fashion similar to the spurious bubble
in Figure 2. For the scale bars, z refers to the spanwise coordinate.

of time steps N; between the snapshots being considered, and the Courant number C
adopted in the simulation. Denote the centroid of a bubble at a flow snapshot j as 7.
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Then, 77 satisfies
|72 — 2"t < CN Az (3.4)
Note that the bubble identification algorithm also generates spatial errors in the centroid
location. However, as shown in Tables 2 and 3, the spatial errors associated with the
identification algorithm are typically much smaller than the grid spacing, and will be
neglected here.
One may now use Eqgs. (3.3) and (3.4) to construct the discrete equivalents of Egs. (3.1)

and (3.2). Consider, first, the constraint arising from the principle of mass conservation.
In the case of breakup, one may write

Ve = [V 4 1]| < AV, (35)
while in the case of coalescence, one may write
Ve = V" + V3"l < AV (3.6)

Now, consider the constraint arising from the satisfaction of the CFL condition. In the
absence of volume errors, one may write, for breakup, the following exact bound

n+1ly, n+1 -n+1lyn+1

VT ay

' zy — VA e < CN; Az, (3.7)
1 2
while in the case of coalescence, one may write
7 n RN n
g1 TV TGV

—————= 21| < CN{Az. 3.8
s - t (33

These bounds are approximate when the volume errors AV, in Egs. (3.5) and (3.6) are
nonzero.

These constraints are sufficient for the identification of breakup and coalescence events,
as well as continuing bubbles, using the bubble volumes and centroid locations. Note,
however, that Tables 4 and 5 suggest that there is a critical size ratio r—substituting
the appropriate value for N for each bubble pair—above which breakup and coalescence
events involving a small bubble and a large bubble cannot be distinguished from fluctua-
tions in the volume of the large bubble from one snapshot to another. Choosing a bubble
identification scheme with a lower volume error increases this critical size ratio keeping
the resolution of the smallest bubble constant, allowing more breakup and coalescence
events to be captured accurately.

3.2. Identifying bubble breakup and coalescence events by tracking centroid locations
and bubble volumes

In order to identify breakup and coalescence events, individual bubbles must be tracked
through time. The bubble tracking algorithm proposed in this work involves comparing
lists of bubble volumes and centroids from two consecutive flow snapshots separated by
a time interval N;At, where At is the time step adopted in the simulation. This process
of analyzing pairs of snapshots is successively repeated from the first to the penultimate
snapshot to obtain a family tree of bubbles throughout the flow evolution. First, the
two lists are traversed in order to locate and tag continuing bubbles. Continuing bubbles
are identified through the satisfaction of Eqgs. (3.3) and (3.4). This search for continuing
bubbles incurs a computational cost O(NZ), where Ny, is the higher number of bubbles in
both lists. Then, the remaining untagged (non-continuing) bubbles are tested for breakup
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and coalescence events using the constraints in Egs. (3.5)—(3.8). This search among non-
continuing bubbles incurs a computational cost O(ng), where n, < Np is the higher
number of noncontinuing bubbles in both lists. To avoid excessive computational costs, a
sufficiently small N; should be chosen so that n, < Nj. Finally, in order to account for the
edge case of large-size-ratio breakup and coalescence events involving one large bubble
and one small bubble, where the large bubble may have been identified as continuing in
the first traversal, the lists are looped over one final time to locate these events. This
is done using the constraints in Eqgs. (3.5)—(3.8) under the following restrictions: either
the continuing bubble is identified as bubbles #0 and #2 and the non-continuing bubble
is identified as bubble #1, or the continuing bubble is identified as bubbles #0 and #1
and the non-continuing bubble is identified as bubble #2. If such an event is determined
to have occurred, then the large bubble is no longer tagged as continuing, and the three
participating bubbles are reclassified as being part of a breakup or coalescence event
instead. This search, which requires one loop over the set of continuing bubbles and
one loop over the set of non-continuing bubbles, incurs a computational cost O(Npnp).
All remaining bubbles are then associated with birth (new bubble appears) or death
(existing bubble disappears) events. In the case where the total volume of the bubbles
remains constant with no inflow or outflow of air, the presence of birth and death events
would suggest that breakup and coalescence events might have been missed due to the
errors discussed above (e.g., large-size-ratio events), the occurrence of ternary/polyadic
breakup or coalescence, or the occurrence of successive breakup or coalescence events
involving the same bubble(s) that were mixed up due to the finite time interval between
the snapshots. The presence of these birth and death events explicitly indicates the failure
of the algorithm to capture relevant breakup and coalescence events. The case of inflow
and/or outflow of air requires more careful consideration of the birth and death of bubbles
and will not be discussed in this brief. An illustration of this algorithm is provided in
Figure 6.

3.3. Demonstration of the algorithm

The algorithm will now be demonstrated on the breakup of a drop in a two-dimensional
(2D) freely-decaying Taylor-Green vortex with v4/v. = 5 and Wep = 20, where v denotes
the kinematic viscosity, d and ¢ denote the dispersed and carrier phases, respectively,
and Wep denotes the Weber number based on the droplet diameter D and carrier fluid
conditions. More detailed parameters of this test case are outlined in the caption of
Figure 7. Other test cases, such as the coalescence of many drops (Chan et al. 2017) and
breakup/coalescence events in more highly-strained single drops breaking up in more
energetic Taylor-Green vortices (v4/v. = 1 and higher Rep with comparable pg/p. and
Wep, where Rep denotes the Reynolds number based on the droplet diameter and carrier
fluid conditions, and p denotes density), have been omitted for brevity. Figure 7 depicts
snapshots of the drop in the vortex before and after breakup, while Figure 8 shows the
breakup events detected using different time intervals between snapshots. In the case of
the shorter time interval, all the breakup events are recovered; in the case of the longer
time interval, some breakup events are missed since more than one breakup occurs in
some of the intervals. The remaining event is unaltered, suggesting that a longer time
interval between snapshots only misses events and does not distort the nature of the
remaining detectable events.

In the interest of space, as well as anticipation of a more careful discussion of an
appropriate time interval between snapshots in relation to expected breakup and coales-
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FIGURE 6. An illustration of the bubble tracking algorithm described in Section 3.2. As depicted
on the left of the figure, the algorithm requires two lists of bubbles: the list in the top row
corresponds to the bubbles present in some flow snapshot (I), while the list in the bottom row
corresponds to the bubbles present in the succeeding snapshot (II). In this example, each list
contains six bubbles (labeled A-F) in both snapshots. No relation between the two sets of six
bubbles is assumed a priori. The algorithm takes the centroid and volume of each bubble as
inputs. The two rows of cells on the right of the figure depict the same lists after the algorithm
has been executed, and the numbers in each list entry correspond to the tags assigned to each
bubble. Suppose the bubbles in the first snapshot were assigned the tags #1-#6. The solid arrows
indicate that bubbles #1 and #4 are continuing. The dashed arrows indicate that bubble #2
split up into bubbles #7 and #8. The dotted arrows indicate that bubbles #5 and #6 coalesced
to form bubble #9. Because bubble #3 could not be associated with a bubble in the second list,
its disappearance should be associated with a death event (x), and because bubble #10 could
not be associated with a bubble in the first list, its formation should be associated with a birth
event (o).
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FIGURE 7. Snapshots of drop breakup in a 2D Taylor-Green vortex, before (a) and after (b)
breakup. The contrasting colors denote different phases, and the small dots indicate the centroids
of each drop. The snapshots are separated by 2560 time steps. Here, the Reynolds and Weber
numbers of the system based on the drop diameter and carrier fluid conditions are Rep = 300
and Wep = 20, respectively, while the density and viscosity ratios of the dispersed phase to the
carrier phase are pq/p. = 5 and v4/v. = 5, respectively.

cence frequencies, the demonstration of the algorithm on the breaking wave introduced
in Section 2.4 is deferred to the companion brief (Chan et al. 2018b).

4. Conclusions

This work has developed algorithms enabling the computation of bubble size distribu-
tions, and the identification of bubble breakup and coalescence events via the tracing of
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FIGURE 8. Family tree of drops constructed by the algorithm in Section 3.2 for the breakup
depicted in Figure 7 where the time interval between snapshots is 10 time steps (a) / 160
time steps (b). The drop tags (vertical axis) and time units (horizontal axis) are arbitrary. Each
horizontal line depicts a drop, and adopts a color between blue (largest drop, darker in grayscale)
and yellow (smallest drop, lighter in grayscale) that is visible in the online version of this brief.
The colors of these lines are not essential to the interpretation of the trees. The vertical lines
depict breakup, where the parent drop is to the left and the child drops are to the right of each
vertical line. The circles denote birth events and the crosses denote death events, consistent with
the symbols introduced in Figure 6.

bubble lineages. The computation of bubble size distributions involves the identification
of the volumes of individual bubbles, which may be accomplished by the flood-fill al-
gorithm. The flood-fill algorithm relies on a grouping criterion that determines whether
pairs of cells should be included in a group. Several grouping criteria were explored in
this work in order to reduce the influence of spurious numerical bubbles without incur-
ring excessive volume errors. Application of the various schemes to the simple test case
of a moving drop suggests that clipping is not suitable as a grouping criterion unless the
threshold value ¢, selected is sufficiently small due to the incurred volume errors. Once
this is satisfied, the resultant bubble size distribution in more complex flows is virtually
indistinguishable from that generated by the substantial mass test, although clipping in-
troduces a larger volume error in individual bubbles. It should be noted that these errors
may be corrected in the sense of the mean. Sensitivity of the observations in Sections
2.3 and 2.4 to the threshold values ¢, ¢¢n, and ¢, will need to be investigated fur-
ther in future work, as will anisotropic bubbles that have a grid-dependent effect on the
distributions. The identification of bubble breakup and coalescence events relies on the
computation of bubble volumes and centroid locations, in tandem with the enforcement
of the constraints that the bubbles satisfy the conservation of mass, and that the simula-
tion satisfies the CFL condition. With these constraints, as well as a good handle on the
errors incurred by the bubble identification algorithm, lists of bubbles from consecutive
snapshots may be compared and tested for these events. Opportunities for improvement
of this algorithm include its inherent inability to identify large-size-ratio events, as well
as ternary/polyadic breakup and coalescence events arising from actual ternary /polyadic
interactions or from the finite time interval between consecutive snapshots. The invari-
ance of the resulting statistics to the duration between consecutive snapshots will also
need to be investigated further in future work.
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