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Fine-scale invariants in turbulence
generated by rising bubbles

By I. Paul AND M. S. Dodd

1. Motivation and objectives

Turbulent flows contain large- and small-scale eddies, where the non-linear interaction
between the eddies causes the energy cascade. At the end of the cascade, the energy is
dissipated at smaller eddies as the viscosity becomes important (Richardson 1926; Kol-
mogorov 1941). Studies on turbulent flows, with their main focus on transport processes,
consider the large scales because they contain most of the turbulent kinetic energy used
for transporting mass, momentum, and heat. On the other hand, analysis of small scales
in turbulent flows helps us to construct theories of turbulence given that they tend to
show universal characteristics (Sreenivasan & Antonia 1997).

We are interested in the fine-scale structure of turbulence in this work. It is established
in the literature that the following characteristics of small-scale turbulence are univer-
sal in homogeneous isotropic turbulence (HIT). They are: (i) topology of the flow, (ii)
vortex stretching and compression, (iii) self-production of strain, and (iv) geometrical
alignments. In this study, we are concerned with the topology of the bubbly flow.

It is well-known that any quantity that characterizes topology of a flow should be inde-
pendent of the coordinate system. This very constraint makes the invariants of different
turbulent small-scale tensors ideal for studying the internal coherence of the flow. Partic-
ularly, the invariants of the velocity-gradient, rotation-rate, and strain-rate tensors are
widely used in the literature to understand the topology, geometry, and dynamics of the
turbulent flow. Moreover, information about the small scales would help other turbulent
models such as large-eddy simulation (LES) for bubbly flows.

We can write the velocity gradient tensor (VGT) Aij=∂ui/∂xj (where, ui, i = 1, 2, 3
are the fluctuating velocity components) in terms of its symmetric and antisymmetric
parts. We call the symmetric part as the strain-rate tensor, Sij , and the antisymmetric
part as the rotation-rate tensor, Ωij . Here, we can also write the rotation-rate tensor in
terms of vorticity components, ωk, as Ωij = −(1/2)ǫijkωk, where ǫijk is the permutation
symbol. The characteristic equation of the VGT is

Λ3
i + PΛ2

i +QΛi +R = 0, (1.1)

where Λi (i = 1, 2, 3) are the eigenvalues of the VGT. P , Q, R are the first, second, and
third invariants of the VGT, respectively. For an incompressible flow, the first invariant
of the VGT is zero (P = 0). The second and third invariants of the VGT are given as

Q =
1

4
(ωiωi − 2SijSij), (1.2)

R = −1

3
(SijSjkSki +

3

4
ωiωjSij). (1.3)
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The discriminant of Eq. (1.1) is

D =
27

4
R2 +Q3. (1.4)

Having obtained the invariants of the VGT, we can get the invariants of the strain-rate
tensor by setting ωi = 0 in Eqs. (1.2) and (1.3). Therefore, the invariants of Sij are

Qs = −1

2
SijSij , (1.5)

Rs = −1

3
SijSjkSki. (1.6)

Finally, we can get the single invariant of the rotation-rate tensor by putting Sij = 0 in
Eq. (1.2), and it is

Qw =
1

4
ωiωi. (1.7)

The main purpose of these invariants is to reveal information regarding the local topology
of the flow field. They have been studied extensively for various turbulent flows and were
found to exhibit some universal characteristics (Chong et al. 1990; Blackburn et al. 1996;
Ooi et al. 1999; Gomes-Fernandes et al. 2014; Meneveau 2011).
The motivation to carry out this current work comes from two facts. First, the afore-

mentioned universal characteristics related to flow coherence have been extensively tested
in various standard turbulent cases such as wake, boundary layers, and mixing layers
(Blackburn et al. 1996; Ooi et al. 1999; Gomes-Fernandes et al. 2014; Meneveau 2011).
However, no such study is available for the bubbly flows. Second, the experiment of
Riboux et al. (2010) reports a -3 slope in the turbulent kinetic energy spectrum. This
observation is interesting, and VGT dynamics are never studied for flows that exhibit
power-law behavior other than the classical -5/3 slope. Since bubbly flows have -3 slope
in their spectra, we are interested in looking at their small-scale dynamics as to whether
they are similar to or different from the one reported for the HIT. Therefore, this work
has two objectives: to document the validation of the direct numerical simulation (DNS)
solver for simulating air bubbles rising in water, and to report the similarities and dif-
ferences in small-scale turbulent invariants between the HIT and bubbly turbulence.
The remainder of this report is organized as follows: The next Section presents the

details of the DNS solver. Then, we validate the DNS solver for two cases related to
bubbly flows in Section 3. After the validation of the solver, we study the invariants of
various tensors related to small-scale turbulence and compare the results against the HIT
in Section 4. Finally, we summarize the main conclusions from this work in Section 5.

2. Mathematical formulation and numerical method

2.1. Governing equations

The governing equations for an incompressible flow of two immiscible fluids are

∇ · u = 0, (2.1a)

∂u

∂t
+∇ · (u⊗ u) =

1

ρ
[−∇p+∇ · (2µS) + fσ] + g, (2.1b)

where u = u(x, t) is the fluid velocity, p = p(x, t) is the pressure, ρ = ρ(x, t) is the density,
µ = µ(x, t) is the dynamic viscosity, S = S(x, t) is the strain-rate tensor (S = [∇u +
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(∇u)T ]/2), fσ is the force due to surface tension, and g is the gravitational acceleration.
The subscripts l and g indicate the liquid and gas phases, respectively. fσ = fσ(x, t) is
the force per unit volume due to surface tension,

fσ = σκδ(s)n, (2.2)

where σ is the surface tension coefficient, κ = κ(x, t) is the curvature of the bubble
interface, n = n(x, t) is the unit vector that is normal to the interface and directed
toward the interior of the bubble, δ is the Dirac δ-function that is needed to impose fσ
only at the interface position, and s is a normal coordinate centered at the interface,
such that s = 0 at the interface.

2.2. Numerical method

We solve the governing Eqs. (2.1a) and (2.1b) throughout the whole computational do-
main, including the interior of the bubbles. The governing equations are discretized in
space in a Eulerian framework using the second-order central difference scheme on a
uniform staggered mesh. The equations are advanced in time using a pressure-correction
method, which uses the second-order Adams-Bashforth scheme. The interface is captured
in time using the volume of fluid (VoF) method, which determines the sharp interface
between the two immiscible fluids using the VoF color function, C, which represents the
volume fraction of the gas in each computational cell. The full details, including verifica-
tion and validation cases, of the VoF and the pressure correction scheme employed can
be found in Baraldi et al. (2014) and Dodd & Ferrante (2014), respectively.

3. Validation of the solver

We first present the validation results for the solver. We apply our solver to two types
of problems. The first one is a single bubble rising in quiescent water, and we compare
our results with a previously reported simulation. Then, we consider the current problem
of an ensemble of air bubbles rising in water leading to bubble-induced homogeneous tur-
bulence. For this case, we compute the energy spectra and probability density functions
(PDFs), and compare them against the experimental result.

3.1. Rising bubble validation

To validate the numerical method presented in Section 2.2, we simulate an air bubble
rising in quiescent water. The non-dimensional parameters and computational domain
size are selected to match a DNS simulation performed by Cano-Lozano et al. (2016). We
chose case 3 from their paper for the comparison because it is the only case that both uses
water as the liquid and plots the bubble Reynolds number as a function of time. It also
yields a bubble diameter of D̃ = 1.64 mm, which is close to the initial bubble diameter
used in our subsequent turbulent simulations (D̃ = 2 mm), and it allows us to validate
the terminal rise velocity against an experimental value (Houghton et al. 1957). The non-
dimensional parameters are Mo = 1.11× 10−11, Bo = 0.36, and Ga = 255.28, which are
the Morton (Mo = gµ4/ρσ3), Bond (Bo = ρgD2/σ), and Galilei (Ga = ρg1/2D3/2/µ)
numbers, where ρ and µ are of the liquid phase. In this regime, the bubble’s path is
known to be chaotic, and the wake consists of aperiodic shedding of two counter-rotating
vortices. Eventually, the bubble reaches a quasi-steady terminal velocity marked by a
nearly constant bubble Reynolds number. The computational domain is 8D× 8D in the
horizontal plane 32D in the direction aligned with gravity. Periodic boundary conditions
are applied in the two horizontal directions and no-slip wall boundary condition is applied
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Figure 1. Temporal evolution of the Reynolds number of an air bubble rising in quiescent
water. Comparison of the present DNS to the numerical result of Cano-Lozano et al. (2016).

at the top and bottom boundaries. The domain is discretized in space on a 90× 90× 360
point uniform mesh, giving a bubble resolution of roughly 13 grid points per diameter,
which is the same resolution that we use in the turbulent case.
Figure 1 shows the time evolution of the bubble Reynolds number, comparing the

current DNS simulation and the numerical result from the literature (Cano-Lozano et al.
2016). The agreement between the two results is good for both the transient phase and the
final quasi-steady period. The onset of bubble oscillations at Re = 450 (Clift et al. 2005)
is also well captured by the present numerical scheme as indicated by oscillations for Re >
450 (t > 0.01). Note that the results of Cano-Lozano et al. (2016) used mesh refinement
near the bubble interface to yield a grid resolution equivalent of 128 computational cells
per diameter compared to 13 magnitude larger than used in the present study.
The terminal rise velocity of the bubble is UT,DNS = 32.5 cm/s, which is within 1% of

that predicted by a well-established empirical correlation, UT,Clift = 32.2 cm/s (Clift et al.
2005, Eq. 7.3), and is also in good agreement with an experimental value of UT,Houghton ≈
34 cm/s (Houghton et al. 1957) considering the sensitivity of the rise velocity to the
experimental conditions. Note that in the numerical work of Cano-Lozano et al. (2016)
and the present work, surfactants are not modeled, and therefore these results correspond
to pure water experimental conditions.

3.2. Turbulent bubbly flow validation

Having validated the DNS solver for a bubble rising in water, we now consider a vertical
channel of liquid water that is initially at rest and randomly seed the flow with spherical
air bubbles that are released from rest. Figure 2 shows a sketch of the vertical channel
used for simulating the turbulent bubbly flow with gravity oriented in the negative y
direction. The computational domain has dimensions of 20D0 × 40D0 × 20D0 in the x-,
y-, and z-directions, respectively. Periodic boundary conditions are applied in the three
spatial directions. The simulation is initialized by introducing spherical bubbles from rest
with initial diameter D0 = 2 mm in quiescent water. The void fraction of air bubbles
is 0.5%, yielding an initial bubble count of 153; however, this number will decrease in
time due to bubble-bubble coalescence. Table 1 summarizes the computational details,
including the number of grid points in the horizontal direction (Nx and Nz) and vertical
direction (Ny).
The bubbles are released at t = 0, and the simulation is advanced in time until reaching
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Figure 2. Instantaneous snapshot of the droplet interfaces (C = 0.5) and vortical structures
identified by Q isosurfaces.

Lx (mm) Ly (mm) Lz (mm) D0 (mm) Nx Ny Nz α Mo Bo Ga Reλ
40 80 40 2 224 448 224 0.5% 2.57× 10−11 0.538 279.1 41.1

Table 1. Computational setup and flow properties.

a quasi-steady state as marked by nearly constant values in time for the turbulent kinetic
energy and its dissipation rate (dk/dt ≈ 0 and dε/dt ≈ 0) at t = 12 s, as shown
in Figure 3. There is ongoing work to advance the simulations further in time such
that a longer steady-state period can be achieved. When bubbles leave the top of the
computational domain they re-enter the bottom of the domain using the same periodic
mapping as used for the velocity and pressure. Considering the bubble’s terminal velocity
is UT ≈ 30 cm s−1, 12 seconds represent about 45 bubble flow-through times. The Taylor-
scale Reynolds number based on the quasi-steady, spatially averaged values of k and ε
in the liquid phase at the end of the simulation (t = 12 s) is Reλ = 41.1.
It is interesting to note the intermittent nature of the dissipation rate, ε(t). The spikes

in dissipation are due to bubble coalescence. When bubbles coalesce, there is a global
reduction in surface area and therefore a reduction in interfacial surface energy. This
excess surface energy is exchanged for turbulent kinetic energy through the power of the
surface tension (Dodd & Ferrante 2016), leading to a jump in k(t) and a corresponding
increase in ε(t). At the final time, the number of bubbles has decreased from an initial
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Figure 3. Time evolution of (a) turbulent kinetic energy and (b) its dissipation rate in the
liquid phase.
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Figure 4. Probability density functions (PDF) of the horizontal (a) and vertical (b) velocity
fluctuations normalized by their RMS value. The present DNS results are compared against the
experimental results of Riboux et al. (2010).

value of 153 to about 10 due to coalescence. Figure 2 shows an instantaneous snapshot
of the computational domain at t = 12 s, which depicts the bubbles and vortical struc-
tures. To validate the DNS of bubble-induced turbulent flow, we compute the PDF of
the velocity fluctuations in the horizontal and vertical directions and compare them to
experimental values reported by Riboux et al. (2010). Figure 4 shows the PDF of the
velocity fluctuations normalized by its RMS velocity comparing the present DNS results
to the experiments which are for a void fraction of α = 0.54%. Figure 4(a) shows the
DNS is able to correctly capture the stretched exponential tails of the horizontal velocity
(u and w) fluctuations and the PDF is symmetric about ui = 0, as expected. The verti-
cal velocity (v) fluctuation PDF (Figure 4(b)) is skewed towards positive fluctuations in
agreement with the experiment. Overall the agreement between the present DNS results
and the experimental values is excellent.
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Figure 5. Energy spectra for the terminal stage. Solid lines are the current results and the dotted
lines are the spectra from the experimental data extract. Different colors represent different
velocity component as: red = u velocity, green = v velocity, blue = w velocity. The inset shows
the compensated spectra in log-log scale.

Finally, we validate our DNS of bubbly turbulence for the turbulent kinetic energy
spectra. As mentioned earlier, the experiment of Riboux et al. (2010) reported a -3 slope
inertial subrange in their spectra. We only consider the liquid phase for the spectra.
The computed energy spectra of all velocity components from the current simulation is
plotted in Figure 5. The results from Riboux et al. (2010) are also added in the same plot.
The horizontal axis of the spectra is the wavelength (λ1) defined as λ1 = k/2π, where k is
the wavenumber. The vertical axis is normalized by the variance of velocity fluctuation.
Indeed, our simulation, just as the experiments, also predicts a -3 power-law behavior in
the spectra for all velocity components. This can be clearly seen in the inset of Figure
5, which shows the compensated energy spectra. These comparisons of spectra and PDF
of velocity show that our simulation predicts several important features of bubbly flow
reported in the literature.

4. Invariants of velocity gradient, strain- and rotation-rate tensors

Having discussed the validation of our DNS solver in the previous section, this section
presents the analysis of small-scale turbulence. The invariants of velocity-gradient, strain-
rate, and rotation-rate tensors are analyzed on various joint probability distribution
function (JPDF) maps. The objective here is to look for the similarities and differences
with respect to the single-phase HIT case. To this end, we also present plots from Ooi
et al. (1999) with permission from the corresponding author of that paper. The results
presented in this section are from the turbulent bubbly flow simulation.
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Figure 6. Joint PDF of Q and R obtained from (a) the HIT and (b) the current simulation.
The blue line in (b) is the equation D=0 (refer to Eq. (1.4)). The isocontour levels in (a) and
(b) are the exponents of probability. Plot (a) is used with permission from the corresponding
author of Ooi et al. (1999).

4.1. Q,R diagram

We first present the JPDF between the second and third invariants of the VGT, which is
commonly known as the Q,R diagram. The main purpose of the Q,R diagram is to reveal
the relationship between the turbulent topology and vortex stretching/compression.

In order to understand the Q,R diagram, note that Q is the balance between enstrophy
and strain-production. Therefore, positive Q represents the vorticity-dominated region,
while the negative Q means the strain-dominated region.
The meaning of R depends on the sign of Q. For positive Q, R becomes R ≈ −(1/4)

ωiSijωj . This means that, for the vorticity-dominated regions, the positive R denotes
vortex compression (i.e., destruction of enstrophy) and the negative R is for the enstrophy
production by vortex stretching.

When Q < 0, R ≈ −(1/3)SijSjkSki = -e1e2e3, where ei, i = 1, 2, 3 are the strain-rate
eigenvalues and they are called the extensive, intermediate, and compressive eigenval-
ues respectively. For the HIT, the extensive (e1) and the compressive (e3) strain-rate
eigenvalues are always positive and negative, respectively. The intermediate strain-rate
eigenvalue (e2) can be either negative or positive. The sign of e2 determines the geome-
try of strain-dominated regions. If e2 is positive, then we have two stretching directions
and one compressive direction, which represent a sheet-like strain-dominated structure.
On the other hand, a negative e2 yields a tube-like strain-dominated structure with two
compressive and one stretching directions. Therefore, a positive R represents a sheet-like
and a negative R means a tube-like straining structure.

We have computed the normalized mean values of Q and R and found their values

as 〈Q〉/〈SijSij〉 = −0.0574 and 〈R〉/〈SijSij〉3/2 = 0.0271. Note that these normalized
values become zero when we include all the mesh points, including the points that lie
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inside the bubble. The nonzero values obtained for the liquid phase suggest that the
bubbly turbulence is inhomogeneous in small scales. They also indicate that the flow, on
average, is more strain-dominated.
The Q,R diagram is widely reported in the literature for various cases (Chong et al.

1990; Blackburn et al. 1996; Gomes-Fernandes et al. 2014; Paul et al. 2017). These cases
vary from mixing layers, boundary layers, jets, wakes, and triply periodic HIT. The Q,R
diagram has a universal tear-drop shape with higher correlation in two regions: Q > 0
with R < 0 that resembles enstrophy production in vorticity-dominated regions, and
Q < 0 with R > 0 meaning sheet-like structures of strain-dominated regions (Tsinober
2009).
The typical Q,R diagram reported in the literature is shown in Figure 6(a). This

plot is adopted from Ooi et al. (1999) for a forced HIT at Reλ = 70.9. The result from
the current simulation is plotted in Figure 6(b). The similarity between these two plots
is found in the strain-dominated regions (i.e., Q < 0). Here, the production of strain
is more preferred than the enstrophy production. Besides, the geometry of the strain-
dominated region is of sheet-like in nature. However, a significant difference is noted in
the vorticity-dominated region, where the preference for vortex stretching is not properly
defined for the current case. In vorticity-dominated regions of bubbly turbulence, there
seems to be an equal tendency to produce velocity gradients of strain (R > 0) and of
vorticity (R < 0), while the classical result has a clearly defined preference for enstrophy
production through vortex stretching. This is the first evidence that the VGT dynamics
of bubbly turbulence is not similar to that of the HIT. It is interesting that we observe
a clearly defined -3 slope where the vortex stretching is not properly defined.

4.2. Qs, Rs diagram

While the Q,R diagram helps us to understand some features of flow topology, the
Qs, Rs diagram provides more information about the nature of the straining process and
its associated geometry. In turbulent flows,Qs is always negative. Therefore, the topology
information from the Qs, Rs diagram depends on the sign of Rs. As we noted previously,
Rs = −e1e2e3. Therefore, Rs > 0 resembles the strain-dominated regions with sheet-
like structures, while Rs < 0 the tube-like strain-dominated region. More information
about the nature of straining can be obtained by writing Rs in terms of the strain-rate
eigenvalues ratios. If a = e2/e1, then Rs can be written as

Rs = (Qs)
3/2

a (1 + a)
(
1 + a+ a2

)3/2
(4.1)

The nature of the straining is given in terms of the strain-rate eigenvalues ratios. If a = 0,
then the ratio e1 : e2 : e3 is 1:0:-1 which corresponds to two-dimensional flow. Likewise,
a = 1 yields 1:1:-2 which denotes axial stretching. Similarly, a = −1/2 gives 2:-1:-1 that
stands for axial contraction. Finally, for a = 1/3, we get the ratio as 3:1:-4, meaning the
straining is of bi-axial stretching.
The Qs, Rs diagram from the literature is given in Figure 7(a). The diagram is clearly

skewed toward positive Rs, leading to the conclusions made from the Q,R diagram that
the strain-dominated regions are statistically sheet-like in nature. Furthermore, Figure
7(a) also shows that the higher probability values are along the line e1 : e2 : e3 = 1:1:-2,
which corresponds to axial stretching. The Qs, Rs diagram of a bubbly flow is depicted
in Figure 7(b). The plot is qualitatively similar to that of the literature result. The only
minor difference is that the more probability in this JPDF is found to be along the line
e1 : e2 : e3 = 3:1:-4, resembling bi-axial stretching. However, the strain-rate eigenvalues
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Figure 7. Joint PDF of Qs and Rs obtained from (a) the HIT and (b) the current simulation.
The lines in (b) correspond to different strain-rate eigenvalues ratios. From left to right, they
correspond to e1 : e2 : e3= 2:-1:-1, 1:0:-1, 3:1:,-4, and 1:1:-2. The isocontour levels in (a) and
(b) are the exponents of probability. Plot (a) is used with permission from the corresponding
author of Ooi et al. (1999).

are generally found to be between 1:1:-2 and 3:1:-4 for various flow configurations (da Silva
& Pereira 2008; Gomes-Fernandes et al. 2014). Therefore, the Qs, RS diagram does not
exhibit anything substantially different from the classical result. In bubbly turbulence,
as in the HIT, the strain-dominated regions are generated by bi-axial stretching and are
statistically sheet-like in nature.

4.3. −Qs, Qw diagram

The final JPDF map widely used in the study of small-scale turbulence is the −Qs, Qw

diagram. The main purpose of this diagram is to understand the topology of the dissi-
pative and vortical regions. Since −Qs and Qw are always positive, the interpretation of
this diagram depends on the direction along which the JPDF contours are aligned. In this
diagram, the horizontal axis represents structures with higher values of enstrophy with
little dissipation (i.e., vortex tubes). The vertical axis belongs to irrotational dissipation
with a high amount of strain and with little or no vorticity. A 45o line (i.e., −Qs = Qw

line) marks the structures with a high amount of strain and vorticity which is equivalent
to a vortex sheet.
The normalized value of 〈Qw〉/〈−Qs〉 should be 1.0 for HIT. In our case, this value is

found to be 0.8859. This difference shows that the bubbly flow is inhomogeneous and it
is, on average, dominated by strain. Similar values were also reported in other studies
(Gomes-Fernandes et al. 2014; Paul et al. 2017).
The −Qs, Qw diagram from the literature is given in Figure 8(a). The behavior of the

−Qs, Qw diagram is found to be dependent on the flow. For example, in Figure 8(a),
which is plotted for the forced HIT, every self-similar JPDF contour has a maximum of
Qw, which is almost twice that of −Qs revealing an equal probability for vortex sheets
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Figure 8. Joint PDF of −Qs and Qw obtained from (a) the HIT and (b) the current simulation.
The dashed blue line in (b) corresponds to the −Qs = Qw equation. The isocontour levels in (a)
and (b) are the exponents of probability. Plot (a) is used with permission from the corresponding
author of Ooi et al. (1999).

and tubes with higher magnitude of enstrophy. Interestingly, studies on grid turbulence
reported −Qs, Qw diagrams that are approximately symmetric about the 45o line, with
the maximum of −Qs for every contour that is similar to that of Qw. The −Qs, Qw

diagram of the current simulation is shown in Figure 8(b). In bubbly flows, we note that
the contours of −Qs, Qw are more aligned toward the vertical axis, with the maximum
value of −Qs for every contour that is more than that of −Qw. This is the opposite of
what is observed for the HIT. The bubbly flows thus seem to be dominated by strain
with the structures of vortex sheets and vortex tubes.

5. Conclusions

We have analyzed the DNS data of turbulent flow due to rising bubbles. Our work had
two objectives: to provide validation of the solver and to understand the similarities and
differences in small-scale invariants between the HIT and bubbly turbulence.
The DNS solver was validated for an air bubble rising in quiescent water. The time

evolution of the bubble Reynolds number was in good agreement with computational
data by Cano-Lozano et al. (2016). Additionally, the final velocity of the bubble was
within 1% of that predicted by an experimentally validated empirical correlation. Next,
the solver was validated for bubble-induced homogeneous turbulence for a void fraction
of 0.5%. We computed the PDFs of the horizontal and vertical velocity fluctuations and
compared them with those computed from those reported in the literature. The DNS
results are in excellent agreement with the experimental data of Riboux et al. (2010).
To analyze the small-scale turbulence, we considered three different JPDFs from the

invariants of the velocity-gradient, strain-rate, and rotation-rate tensors. They are (i)
Q,R, (ii) Qs, RS , and (iii) −Qs, Qw diagrams. Out of these three, only the Qs, Rs diagram
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is similar to that of the HIT. Some significant differences are noted in the other two
diagrams. The Q,R diagram of bubbly flow does not attain its regular tear-drop shape
even in the terminal stage of the simulation. This is because of a less-defined correlation
for Q > 0 and R < 0. As a result, the bubbly flow is statistically strain-dominated, while
the preference for vortex stretching over vortex compression is not as well defined as in the
HIT. The Qs, Rs diagram reveals that the highly-dissipative regions in the bubbly flow
are statistically sheet-like in nature, and they are generated mostly by bi-axial stretching.
Finally, while the contours of the −Qs, Qw diagram for the HIT are aligned toward the
vortex tube axis, the bubbly flow −Qs, Qw diagram contours are clearly aligned toward
the irrotational dissipation axis. The maximum of −Qs is more than that of Qw in the
bubbly flows, whereas the reverse is reported for the HIT. Moreover, vortex sheets and
vortex tubes are highly preferred both in bubbly flows and in the HIT.
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